An artificial intelligence framework for online transient stability assessment of power systems

A framework is proposed to tackle the online transient stability problem of power systems. Based on artificial intelligence, it successively makes use of an inductive inference method to build decisions automatically and a deductive inference method to apply them online. The authors lay the foundati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 1989-05, Vol.4 (2), p.789-800
Hauptverfasser: Wehenkel, L., Van Cutsem, T., Ribbens-Pavella, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 800
container_issue 2
container_start_page 789
container_title IEEE transactions on power systems
container_volume 4
creator Wehenkel, L.
Van Cutsem, T.
Ribbens-Pavella, M.
description A framework is proposed to tackle the online transient stability problem of power systems. Based on artificial intelligence, it successively makes use of an inductive inference method to build decisions automatically and a deductive inference method to apply them online. The authors lay the foundations of an inductive inference method, where the rules explicitly relate a system's stability with relevant parameters of it. A simple but realistic power system is treated to illustrate important features of the method and to suggest how the derived decision rules could be used online.< >
doi_str_mv 10.1109/59.193853
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_193853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>193853</ieee_id><sourcerecordid>28451157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-82010793b2c7c2210fe92178f098210fc21f1bad0800311fa8542af802a6c2553</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKsHr55yEjxsnWSbbnIsxS8oeNFzSONEorubmkkp_e_dsoKn4c378eA9xq4FzIQAc6_MTJhaq_qETYRSuoJFY07ZBLRWlTYKztkF0RcALAZjwuyy5y6XGKKPruWxL9i28RN7jzxk1-E-5W8eUuapb2OPvGTXU8S-cCpuE9tYDtwRIVF3fKbAt2mPmdOBCnZ0yc6Cawmv_u6UvT8-vK2eq_Xr08tqua68BFMqLUFAY-qN9I2XUkBAI0WjAxh9VF6KIDbuAzRALURwWs2lCxqkW3ipVD1lt2PuNqefHVKxXSQ_dHE9ph1ZqedKCNUM4N0I-pyIMga7zbFz-WAF2OOEVhk7TjiwNyMbEfGfG81fNgNsiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28451157</pqid></control><display><type>article</type><title>An artificial intelligence framework for online transient stability assessment of power systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wehenkel, L. ; Van Cutsem, T. ; Ribbens-Pavella, M.</creator><creatorcontrib>Wehenkel, L. ; Van Cutsem, T. ; Ribbens-Pavella, M.</creatorcontrib><description>A framework is proposed to tackle the online transient stability problem of power systems. Based on artificial intelligence, it successively makes use of an inductive inference method to build decisions automatically and a deductive inference method to apply them online. The authors lay the foundations of an inductive inference method, where the rules explicitly relate a system's stability with relevant parameters of it. A simple but realistic power system is treated to illustrate important features of the method and to suggest how the derived decision rules could be used online.&lt; &gt;</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.193853</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Appraisal ; Artificial intelligence ; Decision trees ; Power system analysis computing ; Power system stability ; Power system transients ; Robustness ; Stability analysis ; Time domain analysis ; Transient analysis</subject><ispartof>IEEE transactions on power systems, 1989-05, Vol.4 (2), p.789-800</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c209t-82010793b2c7c2210fe92178f098210fc21f1bad0800311fa8542af802a6c2553</citedby><cites>FETCH-LOGICAL-c209t-82010793b2c7c2210fe92178f098210fc21f1bad0800311fa8542af802a6c2553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/193853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/193853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wehenkel, L.</creatorcontrib><creatorcontrib>Van Cutsem, T.</creatorcontrib><creatorcontrib>Ribbens-Pavella, M.</creatorcontrib><title>An artificial intelligence framework for online transient stability assessment of power systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>A framework is proposed to tackle the online transient stability problem of power systems. Based on artificial intelligence, it successively makes use of an inductive inference method to build decisions automatically and a deductive inference method to apply them online. The authors lay the foundations of an inductive inference method, where the rules explicitly relate a system's stability with relevant parameters of it. A simple but realistic power system is treated to illustrate important features of the method and to suggest how the derived decision rules could be used online.&lt; &gt;</description><subject>Appraisal</subject><subject>Artificial intelligence</subject><subject>Decision trees</subject><subject>Power system analysis computing</subject><subject>Power system stability</subject><subject>Power system transients</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>Time domain analysis</subject><subject>Transient analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWKsHr55yEjxsnWSbbnIsxS8oeNFzSONEorubmkkp_e_dsoKn4c378eA9xq4FzIQAc6_MTJhaq_qETYRSuoJFY07ZBLRWlTYKztkF0RcALAZjwuyy5y6XGKKPruWxL9i28RN7jzxk1-E-5W8eUuapb2OPvGTXU8S-cCpuE9tYDtwRIVF3fKbAt2mPmdOBCnZ0yc6Cawmv_u6UvT8-vK2eq_Xr08tqua68BFMqLUFAY-qN9I2XUkBAI0WjAxh9VF6KIDbuAzRALURwWs2lCxqkW3ipVD1lt2PuNqefHVKxXSQ_dHE9ph1ZqedKCNUM4N0I-pyIMga7zbFz-WAF2OOEVhk7TjiwNyMbEfGfG81fNgNsiQ</recordid><startdate>198905</startdate><enddate>198905</enddate><creator>Wehenkel, L.</creator><creator>Van Cutsem, T.</creator><creator>Ribbens-Pavella, M.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>198905</creationdate><title>An artificial intelligence framework for online transient stability assessment of power systems</title><author>Wehenkel, L. ; Van Cutsem, T. ; Ribbens-Pavella, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-82010793b2c7c2210fe92178f098210fc21f1bad0800311fa8542af802a6c2553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Appraisal</topic><topic>Artificial intelligence</topic><topic>Decision trees</topic><topic>Power system analysis computing</topic><topic>Power system stability</topic><topic>Power system transients</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>Time domain analysis</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wehenkel, L.</creatorcontrib><creatorcontrib>Van Cutsem, T.</creatorcontrib><creatorcontrib>Ribbens-Pavella, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wehenkel, L.</au><au>Van Cutsem, T.</au><au>Ribbens-Pavella, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An artificial intelligence framework for online transient stability assessment of power systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>1989-05</date><risdate>1989</risdate><volume>4</volume><issue>2</issue><spage>789</spage><epage>800</epage><pages>789-800</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>A framework is proposed to tackle the online transient stability problem of power systems. Based on artificial intelligence, it successively makes use of an inductive inference method to build decisions automatically and a deductive inference method to apply them online. The authors lay the foundations of an inductive inference method, where the rules explicitly relate a system's stability with relevant parameters of it. A simple but realistic power system is treated to illustrate important features of the method and to suggest how the derived decision rules could be used online.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/59.193853</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 1989-05, Vol.4 (2), p.789-800
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_193853
source IEEE Electronic Library (IEL)
subjects Appraisal
Artificial intelligence
Decision trees
Power system analysis computing
Power system stability
Power system transients
Robustness
Stability analysis
Time domain analysis
Transient analysis
title An artificial intelligence framework for online transient stability assessment of power systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20artificial%20intelligence%20framework%20for%20online%20transient%20stability%20assessment%20of%20power%20systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Wehenkel,%20L.&rft.date=1989-05&rft.volume=4&rft.issue=2&rft.spage=789&rft.epage=800&rft.pages=789-800&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.193853&rft_dat=%3Cproquest_RIE%3E28451157%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28451157&rft_id=info:pmid/&rft_ieee_id=193853&rfr_iscdi=true