An artificial intelligence framework for online transient stability assessment of power systems
A framework is proposed to tackle the online transient stability problem of power systems. Based on artificial intelligence, it successively makes use of an inductive inference method to build decisions automatically and a deductive inference method to apply them online. The authors lay the foundati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 1989-05, Vol.4 (2), p.789-800 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 800 |
---|---|
container_issue | 2 |
container_start_page | 789 |
container_title | IEEE transactions on power systems |
container_volume | 4 |
creator | Wehenkel, L. Van Cutsem, T. Ribbens-Pavella, M. |
description | A framework is proposed to tackle the online transient stability problem of power systems. Based on artificial intelligence, it successively makes use of an inductive inference method to build decisions automatically and a deductive inference method to apply them online. The authors lay the foundations of an inductive inference method, where the rules explicitly relate a system's stability with relevant parameters of it. A simple but realistic power system is treated to illustrate important features of the method and to suggest how the derived decision rules could be used online.< > |
doi_str_mv | 10.1109/59.193853 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_193853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>193853</ieee_id><sourcerecordid>28451157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-82010793b2c7c2210fe92178f098210fc21f1bad0800311fa8542af802a6c2553</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKsHr55yEjxsnWSbbnIsxS8oeNFzSONEorubmkkp_e_dsoKn4c378eA9xq4FzIQAc6_MTJhaq_qETYRSuoJFY07ZBLRWlTYKztkF0RcALAZjwuyy5y6XGKKPruWxL9i28RN7jzxk1-E-5W8eUuapb2OPvGTXU8S-cCpuE9tYDtwRIVF3fKbAt2mPmdOBCnZ0yc6Cawmv_u6UvT8-vK2eq_Xr08tqua68BFMqLUFAY-qN9I2XUkBAI0WjAxh9VF6KIDbuAzRALURwWs2lCxqkW3ipVD1lt2PuNqefHVKxXSQ_dHE9ph1ZqedKCNUM4N0I-pyIMga7zbFz-WAF2OOEVhk7TjiwNyMbEfGfG81fNgNsiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28451157</pqid></control><display><type>article</type><title>An artificial intelligence framework for online transient stability assessment of power systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wehenkel, L. ; Van Cutsem, T. ; Ribbens-Pavella, M.</creator><creatorcontrib>Wehenkel, L. ; Van Cutsem, T. ; Ribbens-Pavella, M.</creatorcontrib><description>A framework is proposed to tackle the online transient stability problem of power systems. Based on artificial intelligence, it successively makes use of an inductive inference method to build decisions automatically and a deductive inference method to apply them online. The authors lay the foundations of an inductive inference method, where the rules explicitly relate a system's stability with relevant parameters of it. A simple but realistic power system is treated to illustrate important features of the method and to suggest how the derived decision rules could be used online.< ></description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.193853</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Appraisal ; Artificial intelligence ; Decision trees ; Power system analysis computing ; Power system stability ; Power system transients ; Robustness ; Stability analysis ; Time domain analysis ; Transient analysis</subject><ispartof>IEEE transactions on power systems, 1989-05, Vol.4 (2), p.789-800</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c209t-82010793b2c7c2210fe92178f098210fc21f1bad0800311fa8542af802a6c2553</citedby><cites>FETCH-LOGICAL-c209t-82010793b2c7c2210fe92178f098210fc21f1bad0800311fa8542af802a6c2553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/193853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/193853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wehenkel, L.</creatorcontrib><creatorcontrib>Van Cutsem, T.</creatorcontrib><creatorcontrib>Ribbens-Pavella, M.</creatorcontrib><title>An artificial intelligence framework for online transient stability assessment of power systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>A framework is proposed to tackle the online transient stability problem of power systems. Based on artificial intelligence, it successively makes use of an inductive inference method to build decisions automatically and a deductive inference method to apply them online. The authors lay the foundations of an inductive inference method, where the rules explicitly relate a system's stability with relevant parameters of it. A simple but realistic power system is treated to illustrate important features of the method and to suggest how the derived decision rules could be used online.< ></description><subject>Appraisal</subject><subject>Artificial intelligence</subject><subject>Decision trees</subject><subject>Power system analysis computing</subject><subject>Power system stability</subject><subject>Power system transients</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>Time domain analysis</subject><subject>Transient analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWKsHr55yEjxsnWSbbnIsxS8oeNFzSONEorubmkkp_e_dsoKn4c378eA9xq4FzIQAc6_MTJhaq_qETYRSuoJFY07ZBLRWlTYKztkF0RcALAZjwuyy5y6XGKKPruWxL9i28RN7jzxk1-E-5W8eUuapb2OPvGTXU8S-cCpuE9tYDtwRIVF3fKbAt2mPmdOBCnZ0yc6Cawmv_u6UvT8-vK2eq_Xr08tqua68BFMqLUFAY-qN9I2XUkBAI0WjAxh9VF6KIDbuAzRALURwWs2lCxqkW3ipVD1lt2PuNqefHVKxXSQ_dHE9ph1ZqedKCNUM4N0I-pyIMga7zbFz-WAF2OOEVhk7TjiwNyMbEfGfG81fNgNsiQ</recordid><startdate>198905</startdate><enddate>198905</enddate><creator>Wehenkel, L.</creator><creator>Van Cutsem, T.</creator><creator>Ribbens-Pavella, M.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>198905</creationdate><title>An artificial intelligence framework for online transient stability assessment of power systems</title><author>Wehenkel, L. ; Van Cutsem, T. ; Ribbens-Pavella, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-82010793b2c7c2210fe92178f098210fc21f1bad0800311fa8542af802a6c2553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Appraisal</topic><topic>Artificial intelligence</topic><topic>Decision trees</topic><topic>Power system analysis computing</topic><topic>Power system stability</topic><topic>Power system transients</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>Time domain analysis</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wehenkel, L.</creatorcontrib><creatorcontrib>Van Cutsem, T.</creatorcontrib><creatorcontrib>Ribbens-Pavella, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wehenkel, L.</au><au>Van Cutsem, T.</au><au>Ribbens-Pavella, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An artificial intelligence framework for online transient stability assessment of power systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>1989-05</date><risdate>1989</risdate><volume>4</volume><issue>2</issue><spage>789</spage><epage>800</epage><pages>789-800</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>A framework is proposed to tackle the online transient stability problem of power systems. Based on artificial intelligence, it successively makes use of an inductive inference method to build decisions automatically and a deductive inference method to apply them online. The authors lay the foundations of an inductive inference method, where the rules explicitly relate a system's stability with relevant parameters of it. A simple but realistic power system is treated to illustrate important features of the method and to suggest how the derived decision rules could be used online.< ></abstract><pub>IEEE</pub><doi>10.1109/59.193853</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 1989-05, Vol.4 (2), p.789-800 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_193853 |
source | IEEE Electronic Library (IEL) |
subjects | Appraisal Artificial intelligence Decision trees Power system analysis computing Power system stability Power system transients Robustness Stability analysis Time domain analysis Transient analysis |
title | An artificial intelligence framework for online transient stability assessment of power systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20artificial%20intelligence%20framework%20for%20online%20transient%20stability%20assessment%20of%20power%20systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Wehenkel,%20L.&rft.date=1989-05&rft.volume=4&rft.issue=2&rft.spage=789&rft.epage=800&rft.pages=789-800&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.193853&rft_dat=%3Cproquest_RIE%3E28451157%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28451157&rft_id=info:pmid/&rft_ieee_id=193853&rfr_iscdi=true |