A one-transistor synapse circuit with an analog LMS adaptive feedback for neural network VLSI

A one-transistor (1T) synapse circuit which uses a single MOS transistor and is more efficient for VLSI implementation of adaptive neural networks than other synapse circuits is presented. This 1T synapse circuit can be used to implement multiply/divide/sum circuits for realizing an adaptive neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lu, T.C., Chiang, M.L., Kuo, J.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1306 vol.3
container_issue
container_start_page 1303
container_title
container_volume
creator Lu, T.C.
Chiang, M.L.
Kuo, J.B.
description A one-transistor (1T) synapse circuit which uses a single MOS transistor and is more efficient for VLSI implementation of adaptive neural networks than other synapse circuits is presented. This 1T synapse circuit can be used to implement multiply/divide/sum circuits for realizing an adaptive neural network. The feasibility of using this circuit in adaptive neural networks is demonstrated by a 4-b analog-to-digital converter circuit based on the Hopfield modified neural network model with an analog LMS adaptive feedback. DC and transient study shows that the 1T synapse circuits with an analog adaptive feedback circuit can be more efficiently used for VLSI implementation of adaptive neural networks.< >
doi_str_mv 10.1109/ISCAS.1991.176610
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_176610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>176610</ieee_id><sourcerecordid>176610</sourcerecordid><originalsourceid>FETCH-ieee_primary_1766103</originalsourceid><addsrcrecordid>eNp9js1qwkAUhQeKYNE8QF3dFzDe8SdxlhIqCnaV0p3IbbzRMekkzEwU394BXffwwbc4HDhCfEiMpUQ12ebZKo-lUjKWaZJIfBORSpcYmCEuMO2LyLkLhswXqKbzd7FfQWN47C0Zp51vLLi7odYxFNoWnfZw0_4MZAJUNyfYfeVAR2q9vjKUzMdfKioow9BwZ6kO8rfGVvCzy7dD0Supdhy9PBCj9ed3thlrZj60Vv-RvR-eX2f_lg9qk0M6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A one-transistor synapse circuit with an analog LMS adaptive feedback for neural network VLSI</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lu, T.C. ; Chiang, M.L. ; Kuo, J.B.</creator><creatorcontrib>Lu, T.C. ; Chiang, M.L. ; Kuo, J.B.</creatorcontrib><description>A one-transistor (1T) synapse circuit which uses a single MOS transistor and is more efficient for VLSI implementation of adaptive neural networks than other synapse circuits is presented. This 1T synapse circuit can be used to implement multiply/divide/sum circuits for realizing an adaptive neural network. The feasibility of using this circuit in adaptive neural networks is demonstrated by a 4-b analog-to-digital converter circuit based on the Hopfield modified neural network model with an analog LMS adaptive feedback. DC and transient study shows that the 1T synapse circuits with an analog adaptive feedback circuit can be more efficiently used for VLSI implementation of adaptive neural networks.&lt; &gt;</description><identifier>ISBN: 9780780300507</identifier><identifier>ISBN: 0780300505</identifier><identifier>DOI: 10.1109/ISCAS.1991.176610</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Feedback circuits ; Hopfield neural networks ; Least squares approximation ; Linearity ; Neural networks ; Neurofeedback ; Neurons ; Resistors ; Very large scale integration</subject><ispartof>1991 IEEE International Symposium on Circuits and Systems (ISCAS), 1991, p.1303-1306 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/176610$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/176610$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, T.C.</creatorcontrib><creatorcontrib>Chiang, M.L.</creatorcontrib><creatorcontrib>Kuo, J.B.</creatorcontrib><title>A one-transistor synapse circuit with an analog LMS adaptive feedback for neural network VLSI</title><title>1991 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>A one-transistor (1T) synapse circuit which uses a single MOS transistor and is more efficient for VLSI implementation of adaptive neural networks than other synapse circuits is presented. This 1T synapse circuit can be used to implement multiply/divide/sum circuits for realizing an adaptive neural network. The feasibility of using this circuit in adaptive neural networks is demonstrated by a 4-b analog-to-digital converter circuit based on the Hopfield modified neural network model with an analog LMS adaptive feedback. DC and transient study shows that the 1T synapse circuits with an analog adaptive feedback circuit can be more efficiently used for VLSI implementation of adaptive neural networks.&lt; &gt;</description><subject>Adaptive systems</subject><subject>Feedback circuits</subject><subject>Hopfield neural networks</subject><subject>Least squares approximation</subject><subject>Linearity</subject><subject>Neural networks</subject><subject>Neurofeedback</subject><subject>Neurons</subject><subject>Resistors</subject><subject>Very large scale integration</subject><isbn>9780780300507</isbn><isbn>0780300505</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1991</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9js1qwkAUhQeKYNE8QF3dFzDe8SdxlhIqCnaV0p3IbbzRMekkzEwU394BXffwwbc4HDhCfEiMpUQ12ebZKo-lUjKWaZJIfBORSpcYmCEuMO2LyLkLhswXqKbzd7FfQWN47C0Zp51vLLi7odYxFNoWnfZw0_4MZAJUNyfYfeVAR2q9vjKUzMdfKioow9BwZ6kO8rfGVvCzy7dD0Supdhy9PBCj9ed3thlrZj60Vv-RvR-eX2f_lg9qk0M6</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Lu, T.C.</creator><creator>Chiang, M.L.</creator><creator>Kuo, J.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1991</creationdate><title>A one-transistor synapse circuit with an analog LMS adaptive feedback for neural network VLSI</title><author>Lu, T.C. ; Chiang, M.L. ; Kuo, J.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_1766103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Adaptive systems</topic><topic>Feedback circuits</topic><topic>Hopfield neural networks</topic><topic>Least squares approximation</topic><topic>Linearity</topic><topic>Neural networks</topic><topic>Neurofeedback</topic><topic>Neurons</topic><topic>Resistors</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, T.C.</creatorcontrib><creatorcontrib>Chiang, M.L.</creatorcontrib><creatorcontrib>Kuo, J.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, T.C.</au><au>Chiang, M.L.</au><au>Kuo, J.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A one-transistor synapse circuit with an analog LMS adaptive feedback for neural network VLSI</atitle><btitle>1991 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>1991</date><risdate>1991</risdate><spage>1303</spage><epage>1306 vol.3</epage><pages>1303-1306 vol.3</pages><isbn>9780780300507</isbn><isbn>0780300505</isbn><abstract>A one-transistor (1T) synapse circuit which uses a single MOS transistor and is more efficient for VLSI implementation of adaptive neural networks than other synapse circuits is presented. This 1T synapse circuit can be used to implement multiply/divide/sum circuits for realizing an adaptive neural network. The feasibility of using this circuit in adaptive neural networks is demonstrated by a 4-b analog-to-digital converter circuit based on the Hopfield modified neural network model with an analog LMS adaptive feedback. DC and transient study shows that the 1T synapse circuits with an analog adaptive feedback circuit can be more efficiently used for VLSI implementation of adaptive neural networks.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.1991.176610</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780300507
ispartof 1991 IEEE International Symposium on Circuits and Systems (ISCAS), 1991, p.1303-1306 vol.3
issn
language eng
recordid cdi_ieee_primary_176610
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive systems
Feedback circuits
Hopfield neural networks
Least squares approximation
Linearity
Neural networks
Neurofeedback
Neurons
Resistors
Very large scale integration
title A one-transistor synapse circuit with an analog LMS adaptive feedback for neural network VLSI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20one-transistor%20synapse%20circuit%20with%20an%20analog%20LMS%20adaptive%20feedback%20for%20neural%20network%20VLSI&rft.btitle=1991%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Lu,%20T.C.&rft.date=1991&rft.spage=1303&rft.epage=1306%20vol.3&rft.pages=1303-1306%20vol.3&rft.isbn=9780780300507&rft.isbn_list=0780300505&rft_id=info:doi/10.1109/ISCAS.1991.176610&rft_dat=%3Cieee_6IE%3E176610%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=176610&rfr_iscdi=true