Data Clustering using Self-Organizing Maps segmented by Mathematic Morphology and Simplified Cluster Validity Indexes: an application in remotely sensed images

This paper presents a cluster analysis method which automatically finds the number of clusters as well as the partitioning of a data set without any type of interaction with the user. The data clustering is made using the self-organizing (or Kohonen) map (SOM). Different partitions of the trained SO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Goncalves, M.L., de Andrade Netto, M.L., Ferreira Costa, J.A., Zullo, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4428
container_issue
container_start_page 4421
container_title
container_volume
creator Goncalves, M.L.
de Andrade Netto, M.L.
Ferreira Costa, J.A.
Zullo, J.
description This paper presents a cluster analysis method which automatically finds the number of clusters as well as the partitioning of a data set without any type of interaction with the user. The data clustering is made using the self-organizing (or Kohonen) map (SOM). Different partitions of the trained SOM are obtained from different segmentations of the U-matrix (a neuron-distance image) that are generated by means of mathematical morphology techniques. The different partitions of the trained SOM produce different partitions for the data set which are evaluated by cluster validity indexes. To reduce the computational cost of the cluster analysis process this work also proposes the simplification of cluster validity indexes using the statistical properties of the SOM. The proposed methodology is applied in the cluster analysis of remotely sensed images.
doi_str_mv 10.1109/IJCNN.2006.247043
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1716712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1716712</ieee_id><sourcerecordid>1716712</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8122018850a4f64ab31bf9b17e7a1dd756261a6bdf8598a2b1ebe799ec2d4d943</originalsourceid><addsrcrecordid>eNo1jdlOwzAQRS0WiVL6AYgX_0CKt8QxbyhsRV0eCrxWTj1JjbIpdiXCz_CruKJIoxnNzL3nInRNyZRSom5nr9lyOWWEJFMmJBH8BI0YTWgkBJGnaKJkSkJxJRRhZ_8_rvgFunTukxDGleIj9POgvcZZtXceetuUeO8OfQ1VEa36Ujf2-7AvdOewg7KGxoPB-RAufge19naLF23f7dqqLQesG4PXtu4qW9igO3Lxh66ssX7As8bAF7i7IMS6C7JtILQNtg3uoW49VEOIaVzw2lqX4K7QeaErB5PjHKP3p8e37CWar55n2f08slTGPkopY4SmaUy0KBKhc07zQuVUgtTUGBknLKE6yU2RxirVLKeQg1QKtswIowQfo5s_rgWATdeH9H7YUEkTSRn_BbzNbww</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data Clustering using Self-Organizing Maps segmented by Mathematic Morphology and Simplified Cluster Validity Indexes: an application in remotely sensed images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Goncalves, M.L. ; de Andrade Netto, M.L. ; Ferreira Costa, J.A. ; Zullo, J.</creator><creatorcontrib>Goncalves, M.L. ; de Andrade Netto, M.L. ; Ferreira Costa, J.A. ; Zullo, J.</creatorcontrib><description>This paper presents a cluster analysis method which automatically finds the number of clusters as well as the partitioning of a data set without any type of interaction with the user. The data clustering is made using the self-organizing (or Kohonen) map (SOM). Different partitions of the trained SOM are obtained from different segmentations of the U-matrix (a neuron-distance image) that are generated by means of mathematical morphology techniques. The different partitions of the trained SOM produce different partitions for the data set which are evaluated by cluster validity indexes. To reduce the computational cost of the cluster analysis process this work also proposes the simplification of cluster validity indexes using the statistical properties of the SOM. The proposed methodology is applied in the cluster analysis of remotely sensed images.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9780780394902</identifier><identifier>ISBN: 0780394909</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2006.247043</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering methods ; Computational efficiency ; Image analysis ; Image generation ; Image segmentation ; Mathematics ; Morphology ; Satellites ; Self organizing feature maps ; Sensor systems</subject><ispartof>The 2006 IEEE International Joint Conference on Neural Network Proceedings, 2006, p.4421-4428</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1716712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1716712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goncalves, M.L.</creatorcontrib><creatorcontrib>de Andrade Netto, M.L.</creatorcontrib><creatorcontrib>Ferreira Costa, J.A.</creatorcontrib><creatorcontrib>Zullo, J.</creatorcontrib><title>Data Clustering using Self-Organizing Maps segmented by Mathematic Morphology and Simplified Cluster Validity Indexes: an application in remotely sensed images</title><title>The 2006 IEEE International Joint Conference on Neural Network Proceedings</title><addtitle>IJCNN</addtitle><description>This paper presents a cluster analysis method which automatically finds the number of clusters as well as the partitioning of a data set without any type of interaction with the user. The data clustering is made using the self-organizing (or Kohonen) map (SOM). Different partitions of the trained SOM are obtained from different segmentations of the U-matrix (a neuron-distance image) that are generated by means of mathematical morphology techniques. The different partitions of the trained SOM produce different partitions for the data set which are evaluated by cluster validity indexes. To reduce the computational cost of the cluster analysis process this work also proposes the simplification of cluster validity indexes using the statistical properties of the SOM. The proposed methodology is applied in the cluster analysis of remotely sensed images.</description><subject>Clustering methods</subject><subject>Computational efficiency</subject><subject>Image analysis</subject><subject>Image generation</subject><subject>Image segmentation</subject><subject>Mathematics</subject><subject>Morphology</subject><subject>Satellites</subject><subject>Self organizing feature maps</subject><subject>Sensor systems</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9780780394902</isbn><isbn>0780394909</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jdlOwzAQRS0WiVL6AYgX_0CKt8QxbyhsRV0eCrxWTj1JjbIpdiXCz_CruKJIoxnNzL3nInRNyZRSom5nr9lyOWWEJFMmJBH8BI0YTWgkBJGnaKJkSkJxJRRhZ_8_rvgFunTukxDGleIj9POgvcZZtXceetuUeO8OfQ1VEa36Ujf2-7AvdOewg7KGxoPB-RAufge19naLF23f7dqqLQesG4PXtu4qW9igO3Lxh66ssX7As8bAF7i7IMS6C7JtILQNtg3uoW49VEOIaVzw2lqX4K7QeaErB5PjHKP3p8e37CWar55n2f08slTGPkopY4SmaUy0KBKhc07zQuVUgtTUGBknLKE6yU2RxirVLKeQg1QKtswIowQfo5s_rgWATdeH9H7YUEkTSRn_BbzNbww</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Goncalves, M.L.</creator><creator>de Andrade Netto, M.L.</creator><creator>Ferreira Costa, J.A.</creator><creator>Zullo, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Data Clustering using Self-Organizing Maps segmented by Mathematic Morphology and Simplified Cluster Validity Indexes: an application in remotely sensed images</title><author>Goncalves, M.L. ; de Andrade Netto, M.L. ; Ferreira Costa, J.A. ; Zullo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8122018850a4f64ab31bf9b17e7a1dd756261a6bdf8598a2b1ebe799ec2d4d943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Clustering methods</topic><topic>Computational efficiency</topic><topic>Image analysis</topic><topic>Image generation</topic><topic>Image segmentation</topic><topic>Mathematics</topic><topic>Morphology</topic><topic>Satellites</topic><topic>Self organizing feature maps</topic><topic>Sensor systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Goncalves, M.L.</creatorcontrib><creatorcontrib>de Andrade Netto, M.L.</creatorcontrib><creatorcontrib>Ferreira Costa, J.A.</creatorcontrib><creatorcontrib>Zullo, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goncalves, M.L.</au><au>de Andrade Netto, M.L.</au><au>Ferreira Costa, J.A.</au><au>Zullo, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data Clustering using Self-Organizing Maps segmented by Mathematic Morphology and Simplified Cluster Validity Indexes: an application in remotely sensed images</atitle><btitle>The 2006 IEEE International Joint Conference on Neural Network Proceedings</btitle><stitle>IJCNN</stitle><date>2006</date><risdate>2006</risdate><spage>4421</spage><epage>4428</epage><pages>4421-4428</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9780780394902</isbn><isbn>0780394909</isbn><abstract>This paper presents a cluster analysis method which automatically finds the number of clusters as well as the partitioning of a data set without any type of interaction with the user. The data clustering is made using the self-organizing (or Kohonen) map (SOM). Different partitions of the trained SOM are obtained from different segmentations of the U-matrix (a neuron-distance image) that are generated by means of mathematical morphology techniques. The different partitions of the trained SOM produce different partitions for the data set which are evaluated by cluster validity indexes. To reduce the computational cost of the cluster analysis process this work also proposes the simplification of cluster validity indexes using the statistical properties of the SOM. The proposed methodology is applied in the cluster analysis of remotely sensed images.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2006.247043</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2006 IEEE International Joint Conference on Neural Network Proceedings, 2006, p.4421-4428
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_1716712
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering methods
Computational efficiency
Image analysis
Image generation
Image segmentation
Mathematics
Morphology
Satellites
Self organizing feature maps
Sensor systems
title Data Clustering using Self-Organizing Maps segmented by Mathematic Morphology and Simplified Cluster Validity Indexes: an application in remotely sensed images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20Clustering%20using%20Self-Organizing%20Maps%20segmented%20by%20Mathematic%20Morphology%20and%20Simplified%20Cluster%20Validity%20Indexes:%20an%20application%20in%20remotely%20sensed%20images&rft.btitle=The%202006%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Network%20Proceedings&rft.au=Goncalves,%20M.L.&rft.date=2006&rft.spage=4421&rft.epage=4428&rft.pages=4421-4428&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9780780394902&rft.isbn_list=0780394909&rft_id=info:doi/10.1109/IJCNN.2006.247043&rft_dat=%3Cieee_6IE%3E1716712%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1716712&rfr_iscdi=true