A Neuro-augmented Observer for a Class of Nonlinear Systems
A new type of state observer for nonlinear systems is presented in this paper. This observer is a hybrid of linear and nonlinear parts: it is based on a conventional linear observer design, and augmented by a neural network. The neural network approximates only the nonlinear part of the system. The...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2500 |
---|---|
container_issue | |
container_start_page | 2497 |
container_title | |
container_volume | |
creator | Huajun Gong Hao Xu Chowdhury, F.N. |
description | A new type of state observer for nonlinear systems is presented in this paper. This observer is a hybrid of linear and nonlinear parts: it is based on a conventional linear observer design, and augmented by a neural network. The neural network approximates only the nonlinear part of the system. The state estimation error is proved to approach zero asymptotically. |
doi_str_mv | 10.1109/IJCNN.2006.247100 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1716430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1716430</ieee_id><sourcerecordid>1716430</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-431edfa73a66daa65386c2e1f9abf61c0adfc39206b4e92d5fce8151b43ca2243</originalsourceid><addsrcrecordid>eNo1jc1Kw0AURgd_wFr7AOJmXiDx3pnJJIOrEqxWSrpQ1-UmuSORNJGZVOjbW1Dhg7M4cD4hbhFSRHD365eyqlIFYFNlcgQ4EzOFFhNjID8XC5cXcJp2xoG6-Hfa6StxHeMngNLO6Zl4WMqKD2FM6PCx52HiVm7ryOGbg_RjkCTLnmKUo5fVOPTdwBTk6zFOvI834tJTH3nxx7l4Xz2-lc_JZvu0LpebpMM8m06vyK2nXJO1LZHNdGEbxegd1d5iA9T6RjsFtjbsVJv5hgvMsDa6IaWMnou7327HzLuv0O0pHHeYozUa9A_4FEl-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Neuro-augmented Observer for a Class of Nonlinear Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huajun Gong ; Hao Xu ; Chowdhury, F.N.</creator><creatorcontrib>Huajun Gong ; Hao Xu ; Chowdhury, F.N.</creatorcontrib><description>A new type of state observer for nonlinear systems is presented in this paper. This observer is a hybrid of linear and nonlinear parts: it is based on a conventional linear observer design, and augmented by a neural network. The neural network approximates only the nonlinear part of the system. The state estimation error is proved to approach zero asymptotically.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9780780394902</identifier><identifier>ISBN: 0780394909</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2006.247100</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Design methodology ; Fault detection ; NASA ; Neural networks ; Nonlinear dynamical systems ; Nonlinear systems ; Observers ; State estimation ; State feedback</subject><ispartof>The 2006 IEEE International Joint Conference on Neural Network Proceedings, 2006, p.2497-2500</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1716430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1716430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huajun Gong</creatorcontrib><creatorcontrib>Hao Xu</creatorcontrib><creatorcontrib>Chowdhury, F.N.</creatorcontrib><title>A Neuro-augmented Observer for a Class of Nonlinear Systems</title><title>The 2006 IEEE International Joint Conference on Neural Network Proceedings</title><addtitle>IJCNN</addtitle><description>A new type of state observer for nonlinear systems is presented in this paper. This observer is a hybrid of linear and nonlinear parts: it is based on a conventional linear observer design, and augmented by a neural network. The neural network approximates only the nonlinear part of the system. The state estimation error is proved to approach zero asymptotically.</description><subject>Convergence</subject><subject>Design methodology</subject><subject>Fault detection</subject><subject>NASA</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>State estimation</subject><subject>State feedback</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9780780394902</isbn><isbn>0780394909</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jc1Kw0AURgd_wFr7AOJmXiDx3pnJJIOrEqxWSrpQ1-UmuSORNJGZVOjbW1Dhg7M4cD4hbhFSRHD365eyqlIFYFNlcgQ4EzOFFhNjID8XC5cXcJp2xoG6-Hfa6StxHeMngNLO6Zl4WMqKD2FM6PCx52HiVm7ryOGbg_RjkCTLnmKUo5fVOPTdwBTk6zFOvI834tJTH3nxx7l4Xz2-lc_JZvu0LpebpMM8m06vyK2nXJO1LZHNdGEbxegd1d5iA9T6RjsFtjbsVJv5hgvMsDa6IaWMnou7327HzLuv0O0pHHeYozUa9A_4FEl-</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Huajun Gong</creator><creator>Hao Xu</creator><creator>Chowdhury, F.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>A Neuro-augmented Observer for a Class of Nonlinear Systems</title><author>Huajun Gong ; Hao Xu ; Chowdhury, F.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-431edfa73a66daa65386c2e1f9abf61c0adfc39206b4e92d5fce8151b43ca2243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Convergence</topic><topic>Design methodology</topic><topic>Fault detection</topic><topic>NASA</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>State estimation</topic><topic>State feedback</topic><toplevel>online_resources</toplevel><creatorcontrib>Huajun Gong</creatorcontrib><creatorcontrib>Hao Xu</creatorcontrib><creatorcontrib>Chowdhury, F.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huajun Gong</au><au>Hao Xu</au><au>Chowdhury, F.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Neuro-augmented Observer for a Class of Nonlinear Systems</atitle><btitle>The 2006 IEEE International Joint Conference on Neural Network Proceedings</btitle><stitle>IJCNN</stitle><date>2006</date><risdate>2006</risdate><spage>2497</spage><epage>2500</epage><pages>2497-2500</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9780780394902</isbn><isbn>0780394909</isbn><abstract>A new type of state observer for nonlinear systems is presented in this paper. This observer is a hybrid of linear and nonlinear parts: it is based on a conventional linear observer design, and augmented by a neural network. The neural network approximates only the nonlinear part of the system. The state estimation error is proved to approach zero asymptotically.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2006.247100</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | The 2006 IEEE International Joint Conference on Neural Network Proceedings, 2006, p.2497-2500 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_1716430 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Convergence Design methodology Fault detection NASA Neural networks Nonlinear dynamical systems Nonlinear systems Observers State estimation State feedback |
title | A Neuro-augmented Observer for a Class of Nonlinear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Neuro-augmented%20Observer%20for%20a%20Class%20of%20Nonlinear%20Systems&rft.btitle=The%202006%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Network%20Proceedings&rft.au=Huajun%20Gong&rft.date=2006&rft.spage=2497&rft.epage=2500&rft.pages=2497-2500&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9780780394902&rft.isbn_list=0780394909&rft_id=info:doi/10.1109/IJCNN.2006.247100&rft_dat=%3Cieee_6IE%3E1716430%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1716430&rfr_iscdi=true |