Obstacles Detection on a Road by Dense Stereovision with 1D Correlation Windows and Fuzzy Filtering

In this paper, we propose an original approach to obstacles detection based on stereovision with mono-dimensional correlation windows. The result of the algorithm is a dense disparity map associated with a confidence map. For each pixel, correlation indices are computed for several widths of windows...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lefebvre, S., Ambellouis, S., Cabestaing, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 744
container_issue
container_start_page 739
container_title
container_volume
creator Lefebvre, S.
Ambellouis, S.
Cabestaing, F.
description In this paper, we propose an original approach to obstacles detection based on stereovision with mono-dimensional correlation windows. The result of the algorithm is a dense disparity map associated with a confidence map. For each pixel, correlation indices are computed for several widths of windows and several positions of the window centre. Three criteria, extracted from each correlation curve, are combined by a fuzzy filter to define a confidence measure. Our 1D method is compared to a classical 2D method and shows better results in term of errors and density rate. In the context of obstacle detection, we show that a basic segmentation of our disparity map yields a better detection and marking of the obstacles. The method is validated on synthetic image sequences and our results are compared with those obtained using a classical 2D method
doi_str_mv 10.1109/ITSC.2006.1706830
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_1706830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1706830</ieee_id><sourcerecordid>oai_HAL_hal_00521114v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1670-cb30a96069417283e9af33bdf301e52ec33d7ca06041869f494b6808837fa13f3</originalsourceid><addsrcrecordid>eNpFkE9PwkAQxdd_iYh8AONlrx6KM53ttnskVYSEhEQwHpttu5U1tTXdCoFPbxGCySQzeb_33mEYu0MYIoJ6nC4X8dAHkEMMQUYEZ-wGhS8EgBLBOev5GJAHgOHFP6Dw8gRAXbOBc5_dBSIQhEGPZfPUtTorjeNPpjVZa-uKd6P5a61znm47uXKGL1rTmHpt3Z5vbLvi-MTjumlMqf8y77bK643jusr5-Ge32_KxLbuQrT5u2VWhS2cGx91nb-PnZTzxZvOXaTyaeSuUIXhZSqCVBKkEhn5ERumCKM0LAjSBbzKiPMw0SBAYSVUIJVIZQRRRWGikgvrs4dC70mXy3dgv3WyTWttkMpolew0g8BFRrLHz3h-81hhzMh8fS78PkWYF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Obstacles Detection on a Road by Dense Stereovision with 1D Correlation Windows and Fuzzy Filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lefebvre, S. ; Ambellouis, S. ; Cabestaing, F.</creator><creatorcontrib>Lefebvre, S. ; Ambellouis, S. ; Cabestaing, F.</creatorcontrib><description>In this paper, we propose an original approach to obstacles detection based on stereovision with mono-dimensional correlation windows. The result of the algorithm is a dense disparity map associated with a confidence map. For each pixel, correlation indices are computed for several widths of windows and several positions of the window centre. Three criteria, extracted from each correlation curve, are combined by a fuzzy filter to define a confidence measure. Our 1D method is compared to a classical 2D method and shows better results in term of errors and density rate. In the context of obstacle detection, we show that a basic segmentation of our disparity map yields a better detection and marking of the obstacles. The method is validated on synthetic image sequences and our results are compared with those obtained using a classical 2D method</description><identifier>ISSN: 2153-0009</identifier><identifier>ISBN: 1424400937</identifier><identifier>ISBN: 9781424400935</identifier><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 1424400945</identifier><identifier>EISBN: 9781424400942</identifier><identifier>DOI: 10.1109/ITSC.2006.1706830</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Computer Science ; Engineering Sciences ; Filtering ; Filters ; Image segmentation ; Image sequences ; Layout ; Pixel ; Radar detection ; Roads ; Signal and Image Processing ; Stereo vision</subject><ispartof>2006 IEEE Intelligent Transportation Systems Conference, 2006, p.739-744</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3719-1934 ; 0009-0008-5884-7307 ; 0000-0002-8512-5069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1706830$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1706830$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00521114$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefebvre, S.</creatorcontrib><creatorcontrib>Ambellouis, S.</creatorcontrib><creatorcontrib>Cabestaing, F.</creatorcontrib><title>Obstacles Detection on a Road by Dense Stereovision with 1D Correlation Windows and Fuzzy Filtering</title><title>2006 IEEE Intelligent Transportation Systems Conference</title><addtitle>ITSC</addtitle><description>In this paper, we propose an original approach to obstacles detection based on stereovision with mono-dimensional correlation windows. The result of the algorithm is a dense disparity map associated with a confidence map. For each pixel, correlation indices are computed for several widths of windows and several positions of the window centre. Three criteria, extracted from each correlation curve, are combined by a fuzzy filter to define a confidence measure. Our 1D method is compared to a classical 2D method and shows better results in term of errors and density rate. In the context of obstacle detection, we show that a basic segmentation of our disparity map yields a better detection and marking of the obstacles. The method is validated on synthetic image sequences and our results are compared with those obtained using a classical 2D method</description><subject>Cameras</subject><subject>Computer Science</subject><subject>Engineering Sciences</subject><subject>Filtering</subject><subject>Filters</subject><subject>Image segmentation</subject><subject>Image sequences</subject><subject>Layout</subject><subject>Pixel</subject><subject>Radar detection</subject><subject>Roads</subject><subject>Signal and Image Processing</subject><subject>Stereo vision</subject><issn>2153-0009</issn><issn>2153-0017</issn><isbn>1424400937</isbn><isbn>9781424400935</isbn><isbn>1424400945</isbn><isbn>9781424400942</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE9PwkAQxdd_iYh8AONlrx6KM53ttnskVYSEhEQwHpttu5U1tTXdCoFPbxGCySQzeb_33mEYu0MYIoJ6nC4X8dAHkEMMQUYEZ-wGhS8EgBLBOev5GJAHgOHFP6Dw8gRAXbOBc5_dBSIQhEGPZfPUtTorjeNPpjVZa-uKd6P5a61znm47uXKGL1rTmHpt3Z5vbLvi-MTjumlMqf8y77bK643jusr5-Ge32_KxLbuQrT5u2VWhS2cGx91nb-PnZTzxZvOXaTyaeSuUIXhZSqCVBKkEhn5ERumCKM0LAjSBbzKiPMw0SBAYSVUIJVIZQRRRWGikgvrs4dC70mXy3dgv3WyTWttkMpolew0g8BFRrLHz3h-81hhzMh8fS78PkWYF</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lefebvre, S.</creator><creator>Ambellouis, S.</creator><creator>Cabestaing, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3719-1934</orcidid><orcidid>https://orcid.org/0009-0008-5884-7307</orcidid><orcidid>https://orcid.org/0000-0002-8512-5069</orcidid></search><sort><creationdate>2006</creationdate><title>Obstacles Detection on a Road by Dense Stereovision with 1D Correlation Windows and Fuzzy Filtering</title><author>Lefebvre, S. ; Ambellouis, S. ; Cabestaing, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1670-cb30a96069417283e9af33bdf301e52ec33d7ca06041869f494b6808837fa13f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cameras</topic><topic>Computer Science</topic><topic>Engineering Sciences</topic><topic>Filtering</topic><topic>Filters</topic><topic>Image segmentation</topic><topic>Image sequences</topic><topic>Layout</topic><topic>Pixel</topic><topic>Radar detection</topic><topic>Roads</topic><topic>Signal and Image Processing</topic><topic>Stereo vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Lefebvre, S.</creatorcontrib><creatorcontrib>Ambellouis, S.</creatorcontrib><creatorcontrib>Cabestaing, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lefebvre, S.</au><au>Ambellouis, S.</au><au>Cabestaing, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Obstacles Detection on a Road by Dense Stereovision with 1D Correlation Windows and Fuzzy Filtering</atitle><btitle>2006 IEEE Intelligent Transportation Systems Conference</btitle><stitle>ITSC</stitle><date>2006</date><risdate>2006</risdate><spage>739</spage><epage>744</epage><pages>739-744</pages><issn>2153-0009</issn><eissn>2153-0017</eissn><isbn>1424400937</isbn><isbn>9781424400935</isbn><eisbn>1424400945</eisbn><eisbn>9781424400942</eisbn><abstract>In this paper, we propose an original approach to obstacles detection based on stereovision with mono-dimensional correlation windows. The result of the algorithm is a dense disparity map associated with a confidence map. For each pixel, correlation indices are computed for several widths of windows and several positions of the window centre. Three criteria, extracted from each correlation curve, are combined by a fuzzy filter to define a confidence measure. Our 1D method is compared to a classical 2D method and shows better results in term of errors and density rate. In the context of obstacle detection, we show that a basic segmentation of our disparity map yields a better detection and marking of the obstacles. The method is validated on synthetic image sequences and our results are compared with those obtained using a classical 2D method</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2006.1706830</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3719-1934</orcidid><orcidid>https://orcid.org/0009-0008-5884-7307</orcidid><orcidid>https://orcid.org/0000-0002-8512-5069</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0009
ispartof 2006 IEEE Intelligent Transportation Systems Conference, 2006, p.739-744
issn 2153-0009
2153-0017
language eng
recordid cdi_ieee_primary_1706830
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Computer Science
Engineering Sciences
Filtering
Filters
Image segmentation
Image sequences
Layout
Pixel
Radar detection
Roads
Signal and Image Processing
Stereo vision
title Obstacles Detection on a Road by Dense Stereovision with 1D Correlation Windows and Fuzzy Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Obstacles%20Detection%20on%20a%20Road%20by%20Dense%20Stereovision%20with%201D%20Correlation%20Windows%20and%20Fuzzy%20Filtering&rft.btitle=2006%20IEEE%20Intelligent%20Transportation%20Systems%20Conference&rft.au=Lefebvre,%20S.&rft.date=2006&rft.spage=739&rft.epage=744&rft.pages=739-744&rft.issn=2153-0009&rft.eissn=2153-0017&rft.isbn=1424400937&rft.isbn_list=9781424400935&rft_id=info:doi/10.1109/ITSC.2006.1706830&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00521114v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424400945&rft.eisbn_list=9781424400942&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1706830&rfr_iscdi=true