Benefits of Separable, Multilinear Discriminant Classification

This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discrimina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bauckhage, C., Kaster, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue
container_start_page 959
container_title
container_volume 4
creator Bauckhage, C.
Kaster, T.
description This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discriminant analysis. Our findings on a standard data set for object detection in natural environments show that, for the task of image analysis, tensor-based discriminant classifiers perform very robust. They learn and run faster and also generalize better than conventional techniques based on vectorial representations of the data.
doi_str_mv 10.1109/ICPR.2006.321
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1700005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1700005</ieee_id><sourcerecordid>1700005</sourcerecordid><originalsourceid>FETCH-ieee_primary_17000053</originalsourceid><addsrcrecordid>eNp9jbsKwkAQRQcfYHyUVjb7ASbubLKJaSyMihaCqL2sMoGRdZVsLPx7Fay9zSkOhwswRBkhynyyKXb7SEmZRrHCBgRqGmOYJZluQldmaa6VVihbEKDUGCapxg4MvL_KzxKtE5UHMJuTo5JrL-6lONDDVOZsaSy2T1uzZUemEgv2l4pv7IyrRWGN91zyxdR8d31ol8Z6GvzYg9FqeSzWIRPR6fGpTPU6Yfa91PF_-wacAjru</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Benefits of Separable, Multilinear Discriminant Classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bauckhage, C. ; Kaster, T.</creator><creatorcontrib>Bauckhage, C. ; Kaster, T.</creatorcontrib><description>This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discriminant analysis. Our findings on a standard data set for object detection in natural environments show that, for the task of image analysis, tensor-based discriminant classifiers perform very robust. They learn and run faster and also generalize better than conventional techniques based on vectorial representations of the data.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.321</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image analysis ; Image coding ; Laboratories ; Least squares approximation ; Linear discriminant analysis ; Object detection ; Object recognition ; Robustness ; Runtime ; Tensile stress</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.4, p.959-959</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1700005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1700005$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bauckhage, C.</creatorcontrib><creatorcontrib>Kaster, T.</creatorcontrib><title>Benefits of Separable, Multilinear Discriminant Classification</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discriminant analysis. Our findings on a standard data set for object detection in natural environments show that, for the task of image analysis, tensor-based discriminant classifiers perform very robust. They learn and run faster and also generalize better than conventional techniques based on vectorial representations of the data.</description><subject>Image analysis</subject><subject>Image coding</subject><subject>Laboratories</subject><subject>Least squares approximation</subject><subject>Linear discriminant analysis</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Runtime</subject><subject>Tensile stress</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jbsKwkAQRQcfYHyUVjb7ASbubLKJaSyMihaCqL2sMoGRdZVsLPx7Fay9zSkOhwswRBkhynyyKXb7SEmZRrHCBgRqGmOYJZluQldmaa6VVihbEKDUGCapxg4MvL_KzxKtE5UHMJuTo5JrL-6lONDDVOZsaSy2T1uzZUemEgv2l4pv7IyrRWGN91zyxdR8d31ol8Z6GvzYg9FqeSzWIRPR6fGpTPU6Yfa91PF_-wacAjru</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Bauckhage, C.</creator><creator>Kaster, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Benefits of Separable, Multilinear Discriminant Classification</title><author>Bauckhage, C. ; Kaster, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_17000053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Image analysis</topic><topic>Image coding</topic><topic>Laboratories</topic><topic>Least squares approximation</topic><topic>Linear discriminant analysis</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Runtime</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Bauckhage, C.</creatorcontrib><creatorcontrib>Kaster, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bauckhage, C.</au><au>Kaster, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Benefits of Separable, Multilinear Discriminant Classification</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>4</volume><spage>959</spage><epage>959</epage><pages>959-959</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discriminant analysis. Our findings on a standard data set for object detection in natural environments show that, for the task of image analysis, tensor-based discriminant classifiers perform very robust. They learn and run faster and also generalize better than conventional techniques based on vectorial representations of the data.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.321</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.4, p.959-959
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1700005
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Image analysis
Image coding
Laboratories
Least squares approximation
Linear discriminant analysis
Object detection
Object recognition
Robustness
Runtime
Tensile stress
title Benefits of Separable, Multilinear Discriminant Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Benefits%20of%20Separable,%20Multilinear%20Discriminant%20Classification&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Bauckhage,%20C.&rft.date=2006&rft.volume=4&rft.spage=959&rft.epage=959&rft.pages=959-959&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.321&rft_dat=%3Cieee_6IE%3E1700005%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1700005&rfr_iscdi=true