Benefits of Separable, Multilinear Discriminant Classification
This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discrimina...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 959 |
---|---|
container_issue | |
container_start_page | 959 |
container_title | |
container_volume | 4 |
creator | Bauckhage, C. Kaster, T. |
description | This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discriminant analysis. Our findings on a standard data set for object detection in natural environments show that, for the task of image analysis, tensor-based discriminant classifiers perform very robust. They learn and run faster and also generalize better than conventional techniques based on vectorial representations of the data. |
doi_str_mv | 10.1109/ICPR.2006.321 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1700005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1700005</ieee_id><sourcerecordid>1700005</sourcerecordid><originalsourceid>FETCH-ieee_primary_17000053</originalsourceid><addsrcrecordid>eNp9jbsKwkAQRQcfYHyUVjb7ASbubLKJaSyMihaCqL2sMoGRdZVsLPx7Fay9zSkOhwswRBkhynyyKXb7SEmZRrHCBgRqGmOYJZluQldmaa6VVihbEKDUGCapxg4MvL_KzxKtE5UHMJuTo5JrL-6lONDDVOZsaSy2T1uzZUemEgv2l4pv7IyrRWGN91zyxdR8d31ol8Z6GvzYg9FqeSzWIRPR6fGpTPU6Yfa91PF_-wacAjru</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Benefits of Separable, Multilinear Discriminant Classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bauckhage, C. ; Kaster, T.</creator><creatorcontrib>Bauckhage, C. ; Kaster, T.</creatorcontrib><description>This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discriminant analysis. Our findings on a standard data set for object detection in natural environments show that, for the task of image analysis, tensor-based discriminant classifiers perform very robust. They learn and run faster and also generalize better than conventional techniques based on vectorial representations of the data.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.321</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image analysis ; Image coding ; Laboratories ; Least squares approximation ; Linear discriminant analysis ; Object detection ; Object recognition ; Robustness ; Runtime ; Tensile stress</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.4, p.959-959</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1700005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1700005$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bauckhage, C.</creatorcontrib><creatorcontrib>Kaster, T.</creatorcontrib><title>Benefits of Separable, Multilinear Discriminant Classification</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discriminant analysis. Our findings on a standard data set for object detection in natural environments show that, for the task of image analysis, tensor-based discriminant classifiers perform very robust. They learn and run faster and also generalize better than conventional techniques based on vectorial representations of the data.</description><subject>Image analysis</subject><subject>Image coding</subject><subject>Laboratories</subject><subject>Least squares approximation</subject><subject>Linear discriminant analysis</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Runtime</subject><subject>Tensile stress</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jbsKwkAQRQcfYHyUVjb7ASbubLKJaSyMihaCqL2sMoGRdZVsLPx7Fay9zSkOhwswRBkhynyyKXb7SEmZRrHCBgRqGmOYJZluQldmaa6VVihbEKDUGCapxg4MvL_KzxKtE5UHMJuTo5JrL-6lONDDVOZsaSy2T1uzZUemEgv2l4pv7IyrRWGN91zyxdR8d31ol8Z6GvzYg9FqeSzWIRPR6fGpTPU6Yfa91PF_-wacAjru</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Bauckhage, C.</creator><creator>Kaster, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Benefits of Separable, Multilinear Discriminant Classification</title><author>Bauckhage, C. ; Kaster, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_17000053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Image analysis</topic><topic>Image coding</topic><topic>Laboratories</topic><topic>Least squares approximation</topic><topic>Linear discriminant analysis</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Runtime</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Bauckhage, C.</creatorcontrib><creatorcontrib>Kaster, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bauckhage, C.</au><au>Kaster, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Benefits of Separable, Multilinear Discriminant Classification</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>4</volume><spage>959</spage><epage>959</epage><pages>959-959</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discriminant analysis. Our findings on a standard data set for object detection in natural environments show that, for the task of image analysis, tensor-based discriminant classifiers perform very robust. They learn and run faster and also generalize better than conventional techniques based on vectorial representations of the data.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.321</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.4, p.959-959 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_1700005 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Image analysis Image coding Laboratories Least squares approximation Linear discriminant analysis Object detection Object recognition Robustness Runtime Tensile stress |
title | Benefits of Separable, Multilinear Discriminant Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Benefits%20of%20Separable,%20Multilinear%20Discriminant%20Classification&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Bauckhage,%20C.&rft.date=2006&rft.volume=4&rft.spage=959&rft.epage=959&rft.pages=959-959&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.321&rft_dat=%3Cieee_6IE%3E1700005%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1700005&rfr_iscdi=true |