Multi-View Active Shape Model with Robust Parameter Estimation

Active shape model is an efficient way for localizing objects with variable shapes. When ASM is extended to multi-view cases, the parameter estimation approaches in previous works are often sensitive to the initial view, as they do not handle the unreliability of local texture search, which can be c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li Zhang, Haizhou Ai
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue
container_start_page 469
container_title
container_volume 4
creator Li Zhang
Haizhou Ai
description Active shape model is an efficient way for localizing objects with variable shapes. When ASM is extended to multi-view cases, the parameter estimation approaches in previous works are often sensitive to the initial view, as they do not handle the unreliability of local texture search, which can be caused by bad initialization or cluttered background. To overcome this problem, we propose a novel algorithm for parameter estimation, using robust estimators to remove outliers. By weighting dynamically, our method acts as a model selection method, which reveals the hidden shape and view parameters from noisy observations of local texture models. Experiments and comparisons on multi-view face alignment are carried out to show the efficiency of our approach
doi_str_mv 10.1109/ICPR.2006.834
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1699880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1699880</ieee_id><sourcerecordid>1699880</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b3fdd26b5cf7454fda719aa95a30fb020f5a83ba4c373d437ec854b1e103b7613</originalsourceid><addsrcrecordid>eNotjctOwzAQAC0eEqH0yImLf8Bl1_bG8QWpigpUakVVHtfKThzVKCVV4lLx91SCucxthrFbhAki2Pt5uVpPJEA-KZQ-Y5ksFAqjDZ2zazC5JUkS4YJlCIRC54RXbDwMn3BCE2lpM_awPLQpio8Yjnxapfgd-OvW7QNfdnVo-TGmLV93_jAkvnK924UUej4bUty5FLuvG3bZuHYI43-P2Pvj7K18FouXp3k5XYiIhpLwqqlrmXuqGqNJN7UzaJ2z5BQ0HiQ05Arlna6UUbVWJlQFaY8BQXmToxqxu79uDCFs9v1p3_9sMLe2KED9AiD2SaY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-View Active Shape Model with Robust Parameter Estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li Zhang ; Haizhou Ai</creator><creatorcontrib>Li Zhang ; Haizhou Ai</creatorcontrib><description>Active shape model is an efficient way for localizing objects with variable shapes. When ASM is extended to multi-view cases, the parameter estimation approaches in previous works are often sensitive to the initial view, as they do not handle the unreliability of local texture search, which can be caused by bad initialization or cluttered background. To overcome this problem, we propose a novel algorithm for parameter estimation, using robust estimators to remove outliers. By weighting dynamically, our method acts as a model selection method, which reveals the hidden shape and view parameters from noisy observations of local texture models. Experiments and comparisons on multi-view face alignment are carried out to show the efficiency of our approach</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.834</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active shape model ; Computer science ; Humans ; Multi-stage noise shaping ; Parameter estimation ; Principal component analysis ; Robustness ; Solid modeling ; Statistical distributions ; Training data</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.4, p.469-468</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1699880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1699880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Zhang</creatorcontrib><creatorcontrib>Haizhou Ai</creatorcontrib><title>Multi-View Active Shape Model with Robust Parameter Estimation</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>Active shape model is an efficient way for localizing objects with variable shapes. When ASM is extended to multi-view cases, the parameter estimation approaches in previous works are often sensitive to the initial view, as they do not handle the unreliability of local texture search, which can be caused by bad initialization or cluttered background. To overcome this problem, we propose a novel algorithm for parameter estimation, using robust estimators to remove outliers. By weighting dynamically, our method acts as a model selection method, which reveals the hidden shape and view parameters from noisy observations of local texture models. Experiments and comparisons on multi-view face alignment are carried out to show the efficiency of our approach</description><subject>Active shape model</subject><subject>Computer science</subject><subject>Humans</subject><subject>Multi-stage noise shaping</subject><subject>Parameter estimation</subject><subject>Principal component analysis</subject><subject>Robustness</subject><subject>Solid modeling</subject><subject>Statistical distributions</subject><subject>Training data</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjctOwzAQAC0eEqH0yImLf8Bl1_bG8QWpigpUakVVHtfKThzVKCVV4lLx91SCucxthrFbhAki2Pt5uVpPJEA-KZQ-Y5ksFAqjDZ2zazC5JUkS4YJlCIRC54RXbDwMn3BCE2lpM_awPLQpio8Yjnxapfgd-OvW7QNfdnVo-TGmLV93_jAkvnK924UUej4bUty5FLuvG3bZuHYI43-P2Pvj7K18FouXp3k5XYiIhpLwqqlrmXuqGqNJN7UzaJ2z5BQ0HiQ05Arlna6UUbVWJlQFaY8BQXmToxqxu79uDCFs9v1p3_9sMLe2KED9AiD2SaY</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Li Zhang</creator><creator>Haizhou Ai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Multi-View Active Shape Model with Robust Parameter Estimation</title><author>Li Zhang ; Haizhou Ai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b3fdd26b5cf7454fda719aa95a30fb020f5a83ba4c373d437ec854b1e103b7613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Active shape model</topic><topic>Computer science</topic><topic>Humans</topic><topic>Multi-stage noise shaping</topic><topic>Parameter estimation</topic><topic>Principal component analysis</topic><topic>Robustness</topic><topic>Solid modeling</topic><topic>Statistical distributions</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Zhang</creatorcontrib><creatorcontrib>Haizhou Ai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Zhang</au><au>Haizhou Ai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-View Active Shape Model with Robust Parameter Estimation</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>4</volume><spage>469</spage><epage>468</epage><pages>469-468</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>Active shape model is an efficient way for localizing objects with variable shapes. When ASM is extended to multi-view cases, the parameter estimation approaches in previous works are often sensitive to the initial view, as they do not handle the unreliability of local texture search, which can be caused by bad initialization or cluttered background. To overcome this problem, we propose a novel algorithm for parameter estimation, using robust estimators to remove outliers. By weighting dynamically, our method acts as a model selection method, which reveals the hidden shape and view parameters from noisy observations of local texture models. Experiments and comparisons on multi-view face alignment are carried out to show the efficiency of our approach</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.834</doi><tpages>0</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.4, p.469-468
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1699880
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active shape model
Computer science
Humans
Multi-stage noise shaping
Parameter estimation
Principal component analysis
Robustness
Solid modeling
Statistical distributions
Training data
title Multi-View Active Shape Model with Robust Parameter Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-View%20Active%20Shape%20Model%20with%20Robust%20Parameter%20Estimation&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Li%20Zhang&rft.date=2006&rft.volume=4&rft.spage=469&rft.epage=468&rft.pages=469-468&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.834&rft_dat=%3Cieee_6IE%3E1699880%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1699880&rfr_iscdi=true