Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure
A novel stereo matching algorithm is proposed that utilizes color segmentation on the reference image and a self-adapting matching score that maximizes the number of reliable correspondences. The scene structure is modeled by a set of planar surface patches which are estimated using a new technique...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | |
container_start_page | 15 |
container_title | |
container_volume | 3 |
creator | Klaus, A. Sormann, M. Karner, K. |
description | A novel stereo matching algorithm is proposed that utilizes color segmentation on the reference image and a self-adapting matching score that maximizes the number of reliable correspondences. The scene structure is modeled by a set of planar surface patches which are estimated using a new technique that is more robust to outliers. Instead of assigning a disparity value to each pixel, a disparity plane is assigned to each segment. The optimal disparity plane labeling is approximated by applying belief propagation. Experimental results using the Middlebury stereo test bed demonstrate the superior performance of the proposed method |
doi_str_mv | 10.1109/ICPR.2006.1033 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1699458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1699458</ieee_id><sourcerecordid>1699458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-e99b2c728f5d1a53486e2eba1485bc02eff44c11d2a9724e13c1e84308a7f9473</originalsourceid><addsrcrecordid>eNotjEtPAjEURhsfiYhs3bjpHyj29jFtl4AvEohEZI2XmTtYMwxkWhf8eyX6Lc7ZnHyM3YIcAshwP50s3oZKymIIUusz1lNeg3DG2XN2LV0RrLIK5AXrgbQgTGHhig1S-pK_M9YaFXrsY0nbHbVZjDFRxZeZOtrzOebyM7ZbvkonjqmJVPNFtz_gFnPctxzbiiNfUlOLUYWHfMoeYkpxFxvsYj7yOWH67uiGXdbYJBr8u89WT4_vkxcxe32eTkYzUSpfZEEhbFTplK9tBWi18QUp2iAYbzelVFTXxpQAlcLglCHQJZA3Wnp0dTBO99nd328kovWhizvsjmsoQjDW6x9rnlXI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Klaus, A. ; Sormann, M. ; Karner, K.</creator><creatorcontrib>Klaus, A. ; Sormann, M. ; Karner, K.</creatorcontrib><description>A novel stereo matching algorithm is proposed that utilizes color segmentation on the reference image and a self-adapting matching score that maximizes the number of reliable correspondences. The scene structure is modeled by a set of planar surface patches which are estimated using a new technique that is more robust to outliers. Instead of assigning a disparity value to each pixel, a disparity plane is assigned to each segment. The optimal disparity plane labeling is approximated by applying belief propagation. Experimental results using the Middlebury stereo test bed demonstrate the superior performance of the proposed method</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.1033</identifier><language>eng</language><publisher>IEEE</publisher><subject>Belief propagation ; Brightness ; Image segmentation ; Image sensors ; Labeling ; Layout ; Pixel ; Robustness ; Signal to noise ratio ; Testing</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.3, p.15-18</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-e99b2c728f5d1a53486e2eba1485bc02eff44c11d2a9724e13c1e84308a7f9473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1699458$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1699458$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Klaus, A.</creatorcontrib><creatorcontrib>Sormann, M.</creatorcontrib><creatorcontrib>Karner, K.</creatorcontrib><title>Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>A novel stereo matching algorithm is proposed that utilizes color segmentation on the reference image and a self-adapting matching score that maximizes the number of reliable correspondences. The scene structure is modeled by a set of planar surface patches which are estimated using a new technique that is more robust to outliers. Instead of assigning a disparity value to each pixel, a disparity plane is assigned to each segment. The optimal disparity plane labeling is approximated by applying belief propagation. Experimental results using the Middlebury stereo test bed demonstrate the superior performance of the proposed method</description><subject>Belief propagation</subject><subject>Brightness</subject><subject>Image segmentation</subject><subject>Image sensors</subject><subject>Labeling</subject><subject>Layout</subject><subject>Pixel</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><subject>Testing</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtPAjEURhsfiYhs3bjpHyj29jFtl4AvEohEZI2XmTtYMwxkWhf8eyX6Lc7ZnHyM3YIcAshwP50s3oZKymIIUusz1lNeg3DG2XN2LV0RrLIK5AXrgbQgTGHhig1S-pK_M9YaFXrsY0nbHbVZjDFRxZeZOtrzOebyM7ZbvkonjqmJVPNFtz_gFnPctxzbiiNfUlOLUYWHfMoeYkpxFxvsYj7yOWH67uiGXdbYJBr8u89WT4_vkxcxe32eTkYzUSpfZEEhbFTplK9tBWi18QUp2iAYbzelVFTXxpQAlcLglCHQJZA3Wnp0dTBO99nd328kovWhizvsjmsoQjDW6x9rnlXI</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Klaus, A.</creator><creator>Sormann, M.</creator><creator>Karner, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure</title><author>Klaus, A. ; Sormann, M. ; Karner, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-e99b2c728f5d1a53486e2eba1485bc02eff44c11d2a9724e13c1e84308a7f9473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Belief propagation</topic><topic>Brightness</topic><topic>Image segmentation</topic><topic>Image sensors</topic><topic>Labeling</topic><topic>Layout</topic><topic>Pixel</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Klaus, A.</creatorcontrib><creatorcontrib>Sormann, M.</creatorcontrib><creatorcontrib>Karner, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klaus, A.</au><au>Sormann, M.</au><au>Karner, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>3</volume><spage>15</spage><epage>18</epage><pages>15-18</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>A novel stereo matching algorithm is proposed that utilizes color segmentation on the reference image and a self-adapting matching score that maximizes the number of reliable correspondences. The scene structure is modeled by a set of planar surface patches which are estimated using a new technique that is more robust to outliers. Instead of assigning a disparity value to each pixel, a disparity plane is assigned to each segment. The optimal disparity plane labeling is approximated by applying belief propagation. Experimental results using the Middlebury stereo test bed demonstrate the superior performance of the proposed method</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.1033</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.3, p.15-18 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_1699458 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Belief propagation Brightness Image segmentation Image sensors Labeling Layout Pixel Robustness Signal to noise ratio Testing |
title | Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Segment-Based%20Stereo%20Matching%20Using%20Belief%20Propagation%20and%20a%20Self-Adapting%20Dissimilarity%20Measure&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Klaus,%20A.&rft.date=2006&rft.volume=3&rft.spage=15&rft.epage=18&rft.pages=15-18&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.1033&rft_dat=%3Cieee_6IE%3E1699458%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1699458&rfr_iscdi=true |