Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure

A novel stereo matching algorithm is proposed that utilizes color segmentation on the reference image and a self-adapting matching score that maximizes the number of reliable correspondences. The scene structure is modeled by a set of planar surface patches which are estimated using a new technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Klaus, A., Sormann, M., Karner, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 15
container_title
container_volume 3
creator Klaus, A.
Sormann, M.
Karner, K.
description A novel stereo matching algorithm is proposed that utilizes color segmentation on the reference image and a self-adapting matching score that maximizes the number of reliable correspondences. The scene structure is modeled by a set of planar surface patches which are estimated using a new technique that is more robust to outliers. Instead of assigning a disparity value to each pixel, a disparity plane is assigned to each segment. The optimal disparity plane labeling is approximated by applying belief propagation. Experimental results using the Middlebury stereo test bed demonstrate the superior performance of the proposed method
doi_str_mv 10.1109/ICPR.2006.1033
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1699458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1699458</ieee_id><sourcerecordid>1699458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-e99b2c728f5d1a53486e2eba1485bc02eff44c11d2a9724e13c1e84308a7f9473</originalsourceid><addsrcrecordid>eNotjEtPAjEURhsfiYhs3bjpHyj29jFtl4AvEohEZI2XmTtYMwxkWhf8eyX6Lc7ZnHyM3YIcAshwP50s3oZKymIIUusz1lNeg3DG2XN2LV0RrLIK5AXrgbQgTGHhig1S-pK_M9YaFXrsY0nbHbVZjDFRxZeZOtrzOebyM7ZbvkonjqmJVPNFtz_gFnPctxzbiiNfUlOLUYWHfMoeYkpxFxvsYj7yOWH67uiGXdbYJBr8u89WT4_vkxcxe32eTkYzUSpfZEEhbFTplK9tBWi18QUp2iAYbzelVFTXxpQAlcLglCHQJZA3Wnp0dTBO99nd328kovWhizvsjmsoQjDW6x9rnlXI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Klaus, A. ; Sormann, M. ; Karner, K.</creator><creatorcontrib>Klaus, A. ; Sormann, M. ; Karner, K.</creatorcontrib><description>A novel stereo matching algorithm is proposed that utilizes color segmentation on the reference image and a self-adapting matching score that maximizes the number of reliable correspondences. The scene structure is modeled by a set of planar surface patches which are estimated using a new technique that is more robust to outliers. Instead of assigning a disparity value to each pixel, a disparity plane is assigned to each segment. The optimal disparity plane labeling is approximated by applying belief propagation. Experimental results using the Middlebury stereo test bed demonstrate the superior performance of the proposed method</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.1033</identifier><language>eng</language><publisher>IEEE</publisher><subject>Belief propagation ; Brightness ; Image segmentation ; Image sensors ; Labeling ; Layout ; Pixel ; Robustness ; Signal to noise ratio ; Testing</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.3, p.15-18</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-e99b2c728f5d1a53486e2eba1485bc02eff44c11d2a9724e13c1e84308a7f9473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1699458$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1699458$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Klaus, A.</creatorcontrib><creatorcontrib>Sormann, M.</creatorcontrib><creatorcontrib>Karner, K.</creatorcontrib><title>Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>A novel stereo matching algorithm is proposed that utilizes color segmentation on the reference image and a self-adapting matching score that maximizes the number of reliable correspondences. The scene structure is modeled by a set of planar surface patches which are estimated using a new technique that is more robust to outliers. Instead of assigning a disparity value to each pixel, a disparity plane is assigned to each segment. The optimal disparity plane labeling is approximated by applying belief propagation. Experimental results using the Middlebury stereo test bed demonstrate the superior performance of the proposed method</description><subject>Belief propagation</subject><subject>Brightness</subject><subject>Image segmentation</subject><subject>Image sensors</subject><subject>Labeling</subject><subject>Layout</subject><subject>Pixel</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><subject>Testing</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtPAjEURhsfiYhs3bjpHyj29jFtl4AvEohEZI2XmTtYMwxkWhf8eyX6Lc7ZnHyM3YIcAshwP50s3oZKymIIUusz1lNeg3DG2XN2LV0RrLIK5AXrgbQgTGHhig1S-pK_M9YaFXrsY0nbHbVZjDFRxZeZOtrzOebyM7ZbvkonjqmJVPNFtz_gFnPctxzbiiNfUlOLUYWHfMoeYkpxFxvsYj7yOWH67uiGXdbYJBr8u89WT4_vkxcxe32eTkYzUSpfZEEhbFTplK9tBWi18QUp2iAYbzelVFTXxpQAlcLglCHQJZA3Wnp0dTBO99nd328kovWhizvsjmsoQjDW6x9rnlXI</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Klaus, A.</creator><creator>Sormann, M.</creator><creator>Karner, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure</title><author>Klaus, A. ; Sormann, M. ; Karner, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-e99b2c728f5d1a53486e2eba1485bc02eff44c11d2a9724e13c1e84308a7f9473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Belief propagation</topic><topic>Brightness</topic><topic>Image segmentation</topic><topic>Image sensors</topic><topic>Labeling</topic><topic>Layout</topic><topic>Pixel</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Klaus, A.</creatorcontrib><creatorcontrib>Sormann, M.</creatorcontrib><creatorcontrib>Karner, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klaus, A.</au><au>Sormann, M.</au><au>Karner, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>3</volume><spage>15</spage><epage>18</epage><pages>15-18</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>A novel stereo matching algorithm is proposed that utilizes color segmentation on the reference image and a self-adapting matching score that maximizes the number of reliable correspondences. The scene structure is modeled by a set of planar surface patches which are estimated using a new technique that is more robust to outliers. Instead of assigning a disparity value to each pixel, a disparity plane is assigned to each segment. The optimal disparity plane labeling is approximated by applying belief propagation. Experimental results using the Middlebury stereo test bed demonstrate the superior performance of the proposed method</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.1033</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.3, p.15-18
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1699458
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Belief propagation
Brightness
Image segmentation
Image sensors
Labeling
Layout
Pixel
Robustness
Signal to noise ratio
Testing
title Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Segment-Based%20Stereo%20Matching%20Using%20Belief%20Propagation%20and%20a%20Self-Adapting%20Dissimilarity%20Measure&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Klaus,%20A.&rft.date=2006&rft.volume=3&rft.spage=15&rft.epage=18&rft.pages=15-18&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.1033&rft_dat=%3Cieee_6IE%3E1699458%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1699458&rfr_iscdi=true