Multi-layer Mosaics in the Presence of Motion and Depth Effects

In this paper, we present a new segmentation-based 2D mosaic framework. Most of mosaic algorithms do not explicitly remove moving objects from images before registration, so that they often fail when the size of the moving objects is relatively large. To solve this problem, we first segment moving o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Changki Min, Qian Yu, Medioni, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 995
container_issue
container_start_page 992
container_title
container_volume 1
creator Changki Min
Qian Yu
Medioni, G.
description In this paper, we present a new segmentation-based 2D mosaic framework. Most of mosaic algorithms do not explicitly remove moving objects from images before registration, so that they often fail when the size of the moving objects is relatively large. To solve this problem, we first segment moving objects from the input images using the tensor voting framework, and then only the remaining backgrounds are processed for the background mosaic. The second mosaicking step is straightforward because the first motion segmentation step also produces very accurate dense matches. By providing comparative examples, we show that the quality of the background mosaics can be significantly improved by our framework
doi_str_mv 10.1109/ICPR.2006.822
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1699056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1699056</ieee_id><sourcerecordid>1699056</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-513528ac01f173d4da88dd935d9604118b77d51ee70f36bc01344f392c7a0a943</originalsourceid><addsrcrecordid>eNotjM1KAzEURoM_YK1dunKTF5h6b5KbTFYitWqhxSK6LunkhkbqTJmMi769Bf02Z3EOnxC3CFNE8PeL2fp9qgDstFbqTIxUrbFyxtG5uAZnPSlSCBdihEBYGUt4JSalfMFphsgoPxIPq5_9kKt9OHIvV10JuSkyt3LYsVz3XLhtWHbppIbctTK0UT7xYdjJeUrcDOVGXKawLzz551h8Ps8_Zq_V8u1lMXtcVhkdDRWhJlWHBjCh09HEUNcxek3RWzCI9da5SMjsIGm7PXXamKS9alyA4I0ei7u_38zMm0Ofv0N_3KD1HsjqX9WtSGg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-layer Mosaics in the Presence of Motion and Depth Effects</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Changki Min ; Qian Yu ; Medioni, G.</creator><creatorcontrib>Changki Min ; Qian Yu ; Medioni, G.</creatorcontrib><description>In this paper, we present a new segmentation-based 2D mosaic framework. Most of mosaic algorithms do not explicitly remove moving objects from images before registration, so that they often fail when the size of the moving objects is relatively large. To solve this problem, we first segment moving objects from the input images using the tensor voting framework, and then only the remaining backgrounds are processed for the background mosaic. The second mosaicking step is straightforward because the first motion segmentation step also produces very accurate dense matches. By providing comparative examples, we show that the quality of the background mosaics can be significantly improved by our framework</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.822</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Data mining ; Image segmentation ; Image sequences ; Intelligent robots ; Motion segmentation ; Parameter estimation ; Robustness ; Tensile stress ; Voting</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.1, p.992-995</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1699056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1699056$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Changki Min</creatorcontrib><creatorcontrib>Qian Yu</creatorcontrib><creatorcontrib>Medioni, G.</creatorcontrib><title>Multi-layer Mosaics in the Presence of Motion and Depth Effects</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>In this paper, we present a new segmentation-based 2D mosaic framework. Most of mosaic algorithms do not explicitly remove moving objects from images before registration, so that they often fail when the size of the moving objects is relatively large. To solve this problem, we first segment moving objects from the input images using the tensor voting framework, and then only the remaining backgrounds are processed for the background mosaic. The second mosaicking step is straightforward because the first motion segmentation step also produces very accurate dense matches. By providing comparative examples, we show that the quality of the background mosaics can be significantly improved by our framework</description><subject>Computer vision</subject><subject>Data mining</subject><subject>Image segmentation</subject><subject>Image sequences</subject><subject>Intelligent robots</subject><subject>Motion segmentation</subject><subject>Parameter estimation</subject><subject>Robustness</subject><subject>Tensile stress</subject><subject>Voting</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KAzEURoM_YK1dunKTF5h6b5KbTFYitWqhxSK6LunkhkbqTJmMi769Bf02Z3EOnxC3CFNE8PeL2fp9qgDstFbqTIxUrbFyxtG5uAZnPSlSCBdihEBYGUt4JSalfMFphsgoPxIPq5_9kKt9OHIvV10JuSkyt3LYsVz3XLhtWHbppIbctTK0UT7xYdjJeUrcDOVGXKawLzz551h8Ps8_Zq_V8u1lMXtcVhkdDRWhJlWHBjCh09HEUNcxek3RWzCI9da5SMjsIGm7PXXamKS9alyA4I0ei7u_38zMm0Ofv0N_3KD1HsjqX9WtSGg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Changki Min</creator><creator>Qian Yu</creator><creator>Medioni, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Multi-layer Mosaics in the Presence of Motion and Depth Effects</title><author>Changki Min ; Qian Yu ; Medioni, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-513528ac01f173d4da88dd935d9604118b77d51ee70f36bc01344f392c7a0a943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer vision</topic><topic>Data mining</topic><topic>Image segmentation</topic><topic>Image sequences</topic><topic>Intelligent robots</topic><topic>Motion segmentation</topic><topic>Parameter estimation</topic><topic>Robustness</topic><topic>Tensile stress</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Changki Min</creatorcontrib><creatorcontrib>Qian Yu</creatorcontrib><creatorcontrib>Medioni, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changki Min</au><au>Qian Yu</au><au>Medioni, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-layer Mosaics in the Presence of Motion and Depth Effects</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>1</volume><spage>992</spage><epage>995</epage><pages>992-995</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>In this paper, we present a new segmentation-based 2D mosaic framework. Most of mosaic algorithms do not explicitly remove moving objects from images before registration, so that they often fail when the size of the moving objects is relatively large. To solve this problem, we first segment moving objects from the input images using the tensor voting framework, and then only the remaining backgrounds are processed for the background mosaic. The second mosaicking step is straightforward because the first motion segmentation step also produces very accurate dense matches. By providing comparative examples, we show that the quality of the background mosaics can be significantly improved by our framework</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.822</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.1, p.992-995
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1699056
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer vision
Data mining
Image segmentation
Image sequences
Intelligent robots
Motion segmentation
Parameter estimation
Robustness
Tensile stress
Voting
title Multi-layer Mosaics in the Presence of Motion and Depth Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-layer%20Mosaics%20in%20the%20Presence%20of%20Motion%20and%20Depth%20Effects&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Changki%20Min&rft.date=2006&rft.volume=1&rft.spage=992&rft.epage=995&rft.pages=992-995&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.822&rft_dat=%3Cieee_6IE%3E1699056%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1699056&rfr_iscdi=true