Metrics for Mass-Count Disparity
Mass-count disparity is the technical underpinning of the "mice and elephants" phenomenon - that most samples are small, but a few are huge - which may be the most important attribute of heavy-tailed distributions. We propose to visualize this phenomenon by plotting the conventional distri...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | |
container_start_page | 61 |
container_title | |
container_volume | |
creator | Feitelson, D.G. |
description | Mass-count disparity is the technical underpinning of the "mice and elephants" phenomenon - that most samples are small, but a few are huge - which may be the most important attribute of heavy-tailed distributions. We propose to visualize this phenomenon by plotting the conventional distribution and the mass distribution together in the same plot. This then leads to a natural quantification of the effect based on the distance between the two distributions. Such a quantification addresses this important phenomenon directly, taking the full distribution into account, rather than focusing on the mathematical properties of the tail of the distribution. In particular, it shows that the Pareto distribution with tail index 1 \le a \le 2 actually has a relatively low mass-count disparity; the effects often observed are the result of combining some other distribution with a Pareto tail. |
doi_str_mv | 10.1109/MASCOTS.2006.30 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1698537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1698537</ieee_id><sourcerecordid>1698537</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c69f56d71fe940ddefbd8fb5578e547ccb271bb6e5646498e13a4de148e0ea4f3</originalsourceid><addsrcrecordid>eNotzLtOwzAUAFCLh0QonRlY8gMO14_ra49VeEqNOjR75STXkhHQKg5D_54BprMdIe4VNEpBeOw2-3bX7xsN4BoDF6LShlCC1nQp1oE8kAuokQxciUqhdpLQhBtxW8oHgAaFphJ1x8ucx1Kn41x3sRTZHn--l_opl1Oc83K-E9cpfhZe_7sS_ctz377J7e71vd1sZQ6wyNGFhG4ilThYmCZOw-TTgEie0dI4DprUMDhGZ50NnpWJdmJlPQNHm8xKPPy1mZkPpzl_xfl8UC54NGR-AUiJP8E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Metrics for Mass-Count Disparity</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Feitelson, D.G.</creator><creatorcontrib>Feitelson, D.G.</creatorcontrib><description>Mass-count disparity is the technical underpinning of the "mice and elephants" phenomenon - that most samples are small, but a few are huge - which may be the most important attribute of heavy-tailed distributions. We propose to visualize this phenomenon by plotting the conventional distribution and the mass distribution together in the same plot. This then leads to a natural quantification of the effect based on the distance between the two distributions. Such a quantification addresses this important phenomenon directly, taking the full distribution into account, rather than focusing on the mathematical properties of the tail of the distribution. In particular, it shows that the Pareto distribution with tail index 1 \le a \le 2 actually has a relatively low mass-count disparity; the effects often observed are the result of combining some other distribution with a Pareto tail.</description><identifier>ISSN: 1526-7539</identifier><identifier>ISBN: 9780769525730</identifier><identifier>ISBN: 0769525733</identifier><identifier>EISSN: 2375-0227</identifier><identifier>DOI: 10.1109/MASCOTS.2006.30</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Distributed computing ; Internet ; Load management ; Probability distribution ; Runtime ; Shape ; System performance ; Tail ; Visualization</subject><ispartof>14th IEEE International Symposium on Modeling, Analysis, and Simulation, 2006, p.61-68</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1698537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1698537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feitelson, D.G.</creatorcontrib><title>Metrics for Mass-Count Disparity</title><title>14th IEEE International Symposium on Modeling, Analysis, and Simulation</title><addtitle>MASCOT</addtitle><description>Mass-count disparity is the technical underpinning of the "mice and elephants" phenomenon - that most samples are small, but a few are huge - which may be the most important attribute of heavy-tailed distributions. We propose to visualize this phenomenon by plotting the conventional distribution and the mass distribution together in the same plot. This then leads to a natural quantification of the effect based on the distance between the two distributions. Such a quantification addresses this important phenomenon directly, taking the full distribution into account, rather than focusing on the mathematical properties of the tail of the distribution. In particular, it shows that the Pareto distribution with tail index 1 \le a \le 2 actually has a relatively low mass-count disparity; the effects often observed are the result of combining some other distribution with a Pareto tail.</description><subject>Computer science</subject><subject>Distributed computing</subject><subject>Internet</subject><subject>Load management</subject><subject>Probability distribution</subject><subject>Runtime</subject><subject>Shape</subject><subject>System performance</subject><subject>Tail</subject><subject>Visualization</subject><issn>1526-7539</issn><issn>2375-0227</issn><isbn>9780769525730</isbn><isbn>0769525733</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzLtOwzAUAFCLh0QonRlY8gMO14_ra49VeEqNOjR75STXkhHQKg5D_54BprMdIe4VNEpBeOw2-3bX7xsN4BoDF6LShlCC1nQp1oE8kAuokQxciUqhdpLQhBtxW8oHgAaFphJ1x8ucx1Kn41x3sRTZHn--l_opl1Oc83K-E9cpfhZe_7sS_ctz377J7e71vd1sZQ6wyNGFhG4ilThYmCZOw-TTgEie0dI4DprUMDhGZ50NnpWJdmJlPQNHm8xKPPy1mZkPpzl_xfl8UC54NGR-AUiJP8E</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Feitelson, D.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Metrics for Mass-Count Disparity</title><author>Feitelson, D.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c69f56d71fe940ddefbd8fb5578e547ccb271bb6e5646498e13a4de148e0ea4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer science</topic><topic>Distributed computing</topic><topic>Internet</topic><topic>Load management</topic><topic>Probability distribution</topic><topic>Runtime</topic><topic>Shape</topic><topic>System performance</topic><topic>Tail</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Feitelson, D.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feitelson, D.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Metrics for Mass-Count Disparity</atitle><btitle>14th IEEE International Symposium on Modeling, Analysis, and Simulation</btitle><stitle>MASCOT</stitle><date>2006</date><risdate>2006</risdate><spage>61</spage><epage>68</epage><pages>61-68</pages><issn>1526-7539</issn><eissn>2375-0227</eissn><isbn>9780769525730</isbn><isbn>0769525733</isbn><abstract>Mass-count disparity is the technical underpinning of the "mice and elephants" phenomenon - that most samples are small, but a few are huge - which may be the most important attribute of heavy-tailed distributions. We propose to visualize this phenomenon by plotting the conventional distribution and the mass distribution together in the same plot. This then leads to a natural quantification of the effect based on the distance between the two distributions. Such a quantification addresses this important phenomenon directly, taking the full distribution into account, rather than focusing on the mathematical properties of the tail of the distribution. In particular, it shows that the Pareto distribution with tail index 1 \le a \le 2 actually has a relatively low mass-count disparity; the effects often observed are the result of combining some other distribution with a Pareto tail.</abstract><pub>IEEE</pub><doi>10.1109/MASCOTS.2006.30</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1526-7539 |
ispartof | 14th IEEE International Symposium on Modeling, Analysis, and Simulation, 2006, p.61-68 |
issn | 1526-7539 2375-0227 |
language | eng |
recordid | cdi_ieee_primary_1698537 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Distributed computing Internet Load management Probability distribution Runtime Shape System performance Tail Visualization |
title | Metrics for Mass-Count Disparity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Metrics%20for%20Mass-Count%20Disparity&rft.btitle=14th%20IEEE%20International%20Symposium%20on%20Modeling,%20Analysis,%20and%20Simulation&rft.au=Feitelson,%20D.G.&rft.date=2006&rft.spage=61&rft.epage=68&rft.pages=61-68&rft.issn=1526-7539&rft.eissn=2375-0227&rft.isbn=9780769525730&rft.isbn_list=0769525733&rft_id=info:doi/10.1109/MASCOTS.2006.30&rft_dat=%3Cieee_6IE%3E1698537%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1698537&rfr_iscdi=true |