Metrics for Mass-Count Disparity

Mass-count disparity is the technical underpinning of the "mice and elephants" phenomenon - that most samples are small, but a few are huge - which may be the most important attribute of heavy-tailed distributions. We propose to visualize this phenomenon by plotting the conventional distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Feitelson, D.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue
container_start_page 61
container_title
container_volume
creator Feitelson, D.G.
description Mass-count disparity is the technical underpinning of the "mice and elephants" phenomenon - that most samples are small, but a few are huge - which may be the most important attribute of heavy-tailed distributions. We propose to visualize this phenomenon by plotting the conventional distribution and the mass distribution together in the same plot. This then leads to a natural quantification of the effect based on the distance between the two distributions. Such a quantification addresses this important phenomenon directly, taking the full distribution into account, rather than focusing on the mathematical properties of the tail of the distribution. In particular, it shows that the Pareto distribution with tail index 1 \le a \le 2 actually has a relatively low mass-count disparity; the effects often observed are the result of combining some other distribution with a Pareto tail.
doi_str_mv 10.1109/MASCOTS.2006.30
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1698537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1698537</ieee_id><sourcerecordid>1698537</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c69f56d71fe940ddefbd8fb5578e547ccb271bb6e5646498e13a4de148e0ea4f3</originalsourceid><addsrcrecordid>eNotzLtOwzAUAFCLh0QonRlY8gMO14_ra49VeEqNOjR75STXkhHQKg5D_54BprMdIe4VNEpBeOw2-3bX7xsN4BoDF6LShlCC1nQp1oE8kAuokQxciUqhdpLQhBtxW8oHgAaFphJ1x8ucx1Kn41x3sRTZHn--l_opl1Oc83K-E9cpfhZe_7sS_ctz377J7e71vd1sZQ6wyNGFhG4ilThYmCZOw-TTgEie0dI4DprUMDhGZ50NnpWJdmJlPQNHm8xKPPy1mZkPpzl_xfl8UC54NGR-AUiJP8E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Metrics for Mass-Count Disparity</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Feitelson, D.G.</creator><creatorcontrib>Feitelson, D.G.</creatorcontrib><description>Mass-count disparity is the technical underpinning of the "mice and elephants" phenomenon - that most samples are small, but a few are huge - which may be the most important attribute of heavy-tailed distributions. We propose to visualize this phenomenon by plotting the conventional distribution and the mass distribution together in the same plot. This then leads to a natural quantification of the effect based on the distance between the two distributions. Such a quantification addresses this important phenomenon directly, taking the full distribution into account, rather than focusing on the mathematical properties of the tail of the distribution. In particular, it shows that the Pareto distribution with tail index 1 \le a \le 2 actually has a relatively low mass-count disparity; the effects often observed are the result of combining some other distribution with a Pareto tail.</description><identifier>ISSN: 1526-7539</identifier><identifier>ISBN: 9780769525730</identifier><identifier>ISBN: 0769525733</identifier><identifier>EISSN: 2375-0227</identifier><identifier>DOI: 10.1109/MASCOTS.2006.30</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Distributed computing ; Internet ; Load management ; Probability distribution ; Runtime ; Shape ; System performance ; Tail ; Visualization</subject><ispartof>14th IEEE International Symposium on Modeling, Analysis, and Simulation, 2006, p.61-68</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1698537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1698537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feitelson, D.G.</creatorcontrib><title>Metrics for Mass-Count Disparity</title><title>14th IEEE International Symposium on Modeling, Analysis, and Simulation</title><addtitle>MASCOT</addtitle><description>Mass-count disparity is the technical underpinning of the "mice and elephants" phenomenon - that most samples are small, but a few are huge - which may be the most important attribute of heavy-tailed distributions. We propose to visualize this phenomenon by plotting the conventional distribution and the mass distribution together in the same plot. This then leads to a natural quantification of the effect based on the distance between the two distributions. Such a quantification addresses this important phenomenon directly, taking the full distribution into account, rather than focusing on the mathematical properties of the tail of the distribution. In particular, it shows that the Pareto distribution with tail index 1 \le a \le 2 actually has a relatively low mass-count disparity; the effects often observed are the result of combining some other distribution with a Pareto tail.</description><subject>Computer science</subject><subject>Distributed computing</subject><subject>Internet</subject><subject>Load management</subject><subject>Probability distribution</subject><subject>Runtime</subject><subject>Shape</subject><subject>System performance</subject><subject>Tail</subject><subject>Visualization</subject><issn>1526-7539</issn><issn>2375-0227</issn><isbn>9780769525730</isbn><isbn>0769525733</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzLtOwzAUAFCLh0QonRlY8gMO14_ra49VeEqNOjR75STXkhHQKg5D_54BprMdIe4VNEpBeOw2-3bX7xsN4BoDF6LShlCC1nQp1oE8kAuokQxciUqhdpLQhBtxW8oHgAaFphJ1x8ucx1Kn41x3sRTZHn--l_opl1Oc83K-E9cpfhZe_7sS_ctz377J7e71vd1sZQ6wyNGFhG4ilThYmCZOw-TTgEie0dI4DprUMDhGZ50NnpWJdmJlPQNHm8xKPPy1mZkPpzl_xfl8UC54NGR-AUiJP8E</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Feitelson, D.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Metrics for Mass-Count Disparity</title><author>Feitelson, D.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c69f56d71fe940ddefbd8fb5578e547ccb271bb6e5646498e13a4de148e0ea4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer science</topic><topic>Distributed computing</topic><topic>Internet</topic><topic>Load management</topic><topic>Probability distribution</topic><topic>Runtime</topic><topic>Shape</topic><topic>System performance</topic><topic>Tail</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Feitelson, D.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feitelson, D.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Metrics for Mass-Count Disparity</atitle><btitle>14th IEEE International Symposium on Modeling, Analysis, and Simulation</btitle><stitle>MASCOT</stitle><date>2006</date><risdate>2006</risdate><spage>61</spage><epage>68</epage><pages>61-68</pages><issn>1526-7539</issn><eissn>2375-0227</eissn><isbn>9780769525730</isbn><isbn>0769525733</isbn><abstract>Mass-count disparity is the technical underpinning of the "mice and elephants" phenomenon - that most samples are small, but a few are huge - which may be the most important attribute of heavy-tailed distributions. We propose to visualize this phenomenon by plotting the conventional distribution and the mass distribution together in the same plot. This then leads to a natural quantification of the effect based on the distance between the two distributions. Such a quantification addresses this important phenomenon directly, taking the full distribution into account, rather than focusing on the mathematical properties of the tail of the distribution. In particular, it shows that the Pareto distribution with tail index 1 \le a \le 2 actually has a relatively low mass-count disparity; the effects often observed are the result of combining some other distribution with a Pareto tail.</abstract><pub>IEEE</pub><doi>10.1109/MASCOTS.2006.30</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1526-7539
ispartof 14th IEEE International Symposium on Modeling, Analysis, and Simulation, 2006, p.61-68
issn 1526-7539
2375-0227
language eng
recordid cdi_ieee_primary_1698537
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Distributed computing
Internet
Load management
Probability distribution
Runtime
Shape
System performance
Tail
Visualization
title Metrics for Mass-Count Disparity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Metrics%20for%20Mass-Count%20Disparity&rft.btitle=14th%20IEEE%20International%20Symposium%20on%20Modeling,%20Analysis,%20and%20Simulation&rft.au=Feitelson,%20D.G.&rft.date=2006&rft.spage=61&rft.epage=68&rft.pages=61-68&rft.issn=1526-7539&rft.eissn=2375-0227&rft.isbn=9780769525730&rft.isbn_list=0769525733&rft_id=info:doi/10.1109/MASCOTS.2006.30&rft_dat=%3Cieee_6IE%3E1698537%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1698537&rfr_iscdi=true