Retargeting image-processing algorithms to varying processor grain sizes

Embedded computing architectures can be designed to meet a variety of application specific requirements. However, optimized hardware can require compiler support to realize the potential of the hardware. This is especially true for embedded image processing systems where significant architectural va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sander, S.T., Wills, L.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue
container_start_page 8 pp.
container_title
container_volume
creator Sander, S.T.
Wills, L.M.
description Embedded computing architectures can be designed to meet a variety of application specific requirements. However, optimized hardware can require compiler support to realize the potential of the hardware. This is especially true for embedded image processing systems where significant architectural variation is possible, and targeted software can change drastically based on architectural variation. This paper presents methods to compile a single high-level source given a fundamental variation in data-parallel target architectures - processor granularity ranging from a single processor to a massively parallel processor array. The approach uses single PPE virtualization, which supports pixel-level data-parallel expressions that operate on a virtual one pixel per processing element (PPE) network and applies pixel-locating transformations to retarget the code into a given target PPE. Unlike mainstream parallel computing techniques, this technique can be applied to lightweight SIMD targets that do not provide global communication hardware or shared memory
doi_str_mv 10.1109/ICPPW.2006.67
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1690723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1690723</ieee_id><sourcerecordid>1690723</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-527582da4aba2b8a5844d8be1030c9993be9c2a9b6b6cf231ed4b4b9bc2a14e13</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQcfYKxdunKTP5B45527lKBtoWARxWWZSW7jSNuUmSDUX2-KXR34OBzOx9g9h5JzwMdFvVp9lgLAlMZesExIKQptEC7ZFG0F1qAWRlq8YhlwhEIir27YbUrfAAKkVhmbv9HgYkdD2Hd52LmOikPsG0rpBNy262MYvnYpH_r8x8XjiZ4Lfcy76MI-T-GX0h273rhtouk5J-zj5fm9nhfL19mifloWgVs9FFpYXYnWKeed8JXTlVJt5YmDhAYRpSdshENvvGk2QnJqlVce_Qi5Ii4n7OF_NxDR-hDHz_G45qO1Hf3_AMgJTzE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Retargeting image-processing algorithms to varying processor grain sizes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sander, S.T. ; Wills, L.M.</creator><creatorcontrib>Sander, S.T. ; Wills, L.M.</creatorcontrib><description>Embedded computing architectures can be designed to meet a variety of application specific requirements. However, optimized hardware can require compiler support to realize the potential of the hardware. This is especially true for embedded image processing systems where significant architectural variation is possible, and targeted software can change drastically based on architectural variation. This paper presents methods to compile a single high-level source given a fundamental variation in data-parallel target architectures - processor granularity ranging from a single processor to a massively parallel processor array. The approach uses single PPE virtualization, which supports pixel-level data-parallel expressions that operate on a virtual one pixel per processing element (PPE) network and applies pixel-locating transformations to retarget the code into a given target PPE. Unlike mainstream parallel computing techniques, this technique can be applied to lightweight SIMD targets that do not provide global communication hardware or shared memory</description><identifier>ISSN: 0190-3918</identifier><identifier>ISBN: 9780769526379</identifier><identifier>ISBN: 0769526373</identifier><identifier>EISSN: 2332-5690</identifier><identifier>DOI: 10.1109/ICPPW.2006.67</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer architecture ; Embedded computing ; Embedded software ; Global communication ; Grain size ; Hardware ; Image processing ; Optimizing compilers ; Parallel processing</subject><ispartof>2006 International Conference on Parallel Processing Workshops (ICPPW'06), 2006, p.8 pp.-383</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1690723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1690723$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sander, S.T.</creatorcontrib><creatorcontrib>Wills, L.M.</creatorcontrib><title>Retargeting image-processing algorithms to varying processor grain sizes</title><title>2006 International Conference on Parallel Processing Workshops (ICPPW'06)</title><addtitle>ICPPW</addtitle><description>Embedded computing architectures can be designed to meet a variety of application specific requirements. However, optimized hardware can require compiler support to realize the potential of the hardware. This is especially true for embedded image processing systems where significant architectural variation is possible, and targeted software can change drastically based on architectural variation. This paper presents methods to compile a single high-level source given a fundamental variation in data-parallel target architectures - processor granularity ranging from a single processor to a massively parallel processor array. The approach uses single PPE virtualization, which supports pixel-level data-parallel expressions that operate on a virtual one pixel per processing element (PPE) network and applies pixel-locating transformations to retarget the code into a given target PPE. Unlike mainstream parallel computing techniques, this technique can be applied to lightweight SIMD targets that do not provide global communication hardware or shared memory</description><subject>Application software</subject><subject>Computer architecture</subject><subject>Embedded computing</subject><subject>Embedded software</subject><subject>Global communication</subject><subject>Grain size</subject><subject>Hardware</subject><subject>Image processing</subject><subject>Optimizing compilers</subject><subject>Parallel processing</subject><issn>0190-3918</issn><issn>2332-5690</issn><isbn>9780769526379</isbn><isbn>0769526373</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AUhQcfYKxdunKTP5B45527lKBtoWARxWWZSW7jSNuUmSDUX2-KXR34OBzOx9g9h5JzwMdFvVp9lgLAlMZesExIKQptEC7ZFG0F1qAWRlq8YhlwhEIir27YbUrfAAKkVhmbv9HgYkdD2Hd52LmOikPsG0rpBNy262MYvnYpH_r8x8XjiZ4Lfcy76MI-T-GX0h273rhtouk5J-zj5fm9nhfL19mifloWgVs9FFpYXYnWKeed8JXTlVJt5YmDhAYRpSdshENvvGk2QnJqlVce_Qi5Ii4n7OF_NxDR-hDHz_G45qO1Hf3_AMgJTzE</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Sander, S.T.</creator><creator>Wills, L.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Retargeting image-processing algorithms to varying processor grain sizes</title><author>Sander, S.T. ; Wills, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-527582da4aba2b8a5844d8be1030c9993be9c2a9b6b6cf231ed4b4b9bc2a14e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Application software</topic><topic>Computer architecture</topic><topic>Embedded computing</topic><topic>Embedded software</topic><topic>Global communication</topic><topic>Grain size</topic><topic>Hardware</topic><topic>Image processing</topic><topic>Optimizing compilers</topic><topic>Parallel processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Sander, S.T.</creatorcontrib><creatorcontrib>Wills, L.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sander, S.T.</au><au>Wills, L.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Retargeting image-processing algorithms to varying processor grain sizes</atitle><btitle>2006 International Conference on Parallel Processing Workshops (ICPPW'06)</btitle><stitle>ICPPW</stitle><date>2006</date><risdate>2006</risdate><spage>8 pp.</spage><epage>383</epage><pages>8 pp.-383</pages><issn>0190-3918</issn><eissn>2332-5690</eissn><isbn>9780769526379</isbn><isbn>0769526373</isbn><abstract>Embedded computing architectures can be designed to meet a variety of application specific requirements. However, optimized hardware can require compiler support to realize the potential of the hardware. This is especially true for embedded image processing systems where significant architectural variation is possible, and targeted software can change drastically based on architectural variation. This paper presents methods to compile a single high-level source given a fundamental variation in data-parallel target architectures - processor granularity ranging from a single processor to a massively parallel processor array. The approach uses single PPE virtualization, which supports pixel-level data-parallel expressions that operate on a virtual one pixel per processing element (PPE) network and applies pixel-locating transformations to retarget the code into a given target PPE. Unlike mainstream parallel computing techniques, this technique can be applied to lightweight SIMD targets that do not provide global communication hardware or shared memory</abstract><pub>IEEE</pub><doi>10.1109/ICPPW.2006.67</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0190-3918
ispartof 2006 International Conference on Parallel Processing Workshops (ICPPW'06), 2006, p.8 pp.-383
issn 0190-3918
2332-5690
language eng
recordid cdi_ieee_primary_1690723
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computer architecture
Embedded computing
Embedded software
Global communication
Grain size
Hardware
Image processing
Optimizing compilers
Parallel processing
title Retargeting image-processing algorithms to varying processor grain sizes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Retargeting%20image-processing%20algorithms%20to%20varying%20processor%20grain%20sizes&rft.btitle=2006%20International%20Conference%20on%20Parallel%20Processing%20Workshops%20(ICPPW'06)&rft.au=Sander,%20S.T.&rft.date=2006&rft.spage=8%20pp.&rft.epage=383&rft.pages=8%20pp.-383&rft.issn=0190-3918&rft.eissn=2332-5690&rft.isbn=9780769526379&rft.isbn_list=0769526373&rft_id=info:doi/10.1109/ICPPW.2006.67&rft_dat=%3Cieee_6IE%3E1690723%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1690723&rfr_iscdi=true