Retargeting image-processing algorithms to varying processor grain sizes
Embedded computing architectures can be designed to meet a variety of application specific requirements. However, optimized hardware can require compiler support to realize the potential of the hardware. This is especially true for embedded image processing systems where significant architectural va...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | |
container_start_page | 8 pp. |
container_title | |
container_volume | |
creator | Sander, S.T. Wills, L.M. |
description | Embedded computing architectures can be designed to meet a variety of application specific requirements. However, optimized hardware can require compiler support to realize the potential of the hardware. This is especially true for embedded image processing systems where significant architectural variation is possible, and targeted software can change drastically based on architectural variation. This paper presents methods to compile a single high-level source given a fundamental variation in data-parallel target architectures - processor granularity ranging from a single processor to a massively parallel processor array. The approach uses single PPE virtualization, which supports pixel-level data-parallel expressions that operate on a virtual one pixel per processing element (PPE) network and applies pixel-locating transformations to retarget the code into a given target PPE. Unlike mainstream parallel computing techniques, this technique can be applied to lightweight SIMD targets that do not provide global communication hardware or shared memory |
doi_str_mv | 10.1109/ICPPW.2006.67 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1690723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1690723</ieee_id><sourcerecordid>1690723</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-527582da4aba2b8a5844d8be1030c9993be9c2a9b6b6cf231ed4b4b9bc2a14e13</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQcfYKxdunKTP5B45527lKBtoWARxWWZSW7jSNuUmSDUX2-KXR34OBzOx9g9h5JzwMdFvVp9lgLAlMZesExIKQptEC7ZFG0F1qAWRlq8YhlwhEIir27YbUrfAAKkVhmbv9HgYkdD2Hd52LmOikPsG0rpBNy262MYvnYpH_r8x8XjiZ4Lfcy76MI-T-GX0h273rhtouk5J-zj5fm9nhfL19mifloWgVs9FFpYXYnWKeed8JXTlVJt5YmDhAYRpSdshENvvGk2QnJqlVce_Qi5Ii4n7OF_NxDR-hDHz_G45qO1Hf3_AMgJTzE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Retargeting image-processing algorithms to varying processor grain sizes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sander, S.T. ; Wills, L.M.</creator><creatorcontrib>Sander, S.T. ; Wills, L.M.</creatorcontrib><description>Embedded computing architectures can be designed to meet a variety of application specific requirements. However, optimized hardware can require compiler support to realize the potential of the hardware. This is especially true for embedded image processing systems where significant architectural variation is possible, and targeted software can change drastically based on architectural variation. This paper presents methods to compile a single high-level source given a fundamental variation in data-parallel target architectures - processor granularity ranging from a single processor to a massively parallel processor array. The approach uses single PPE virtualization, which supports pixel-level data-parallel expressions that operate on a virtual one pixel per processing element (PPE) network and applies pixel-locating transformations to retarget the code into a given target PPE. Unlike mainstream parallel computing techniques, this technique can be applied to lightweight SIMD targets that do not provide global communication hardware or shared memory</description><identifier>ISSN: 0190-3918</identifier><identifier>ISBN: 9780769526379</identifier><identifier>ISBN: 0769526373</identifier><identifier>EISSN: 2332-5690</identifier><identifier>DOI: 10.1109/ICPPW.2006.67</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer architecture ; Embedded computing ; Embedded software ; Global communication ; Grain size ; Hardware ; Image processing ; Optimizing compilers ; Parallel processing</subject><ispartof>2006 International Conference on Parallel Processing Workshops (ICPPW'06), 2006, p.8 pp.-383</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1690723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1690723$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sander, S.T.</creatorcontrib><creatorcontrib>Wills, L.M.</creatorcontrib><title>Retargeting image-processing algorithms to varying processor grain sizes</title><title>2006 International Conference on Parallel Processing Workshops (ICPPW'06)</title><addtitle>ICPPW</addtitle><description>Embedded computing architectures can be designed to meet a variety of application specific requirements. However, optimized hardware can require compiler support to realize the potential of the hardware. This is especially true for embedded image processing systems where significant architectural variation is possible, and targeted software can change drastically based on architectural variation. This paper presents methods to compile a single high-level source given a fundamental variation in data-parallel target architectures - processor granularity ranging from a single processor to a massively parallel processor array. The approach uses single PPE virtualization, which supports pixel-level data-parallel expressions that operate on a virtual one pixel per processing element (PPE) network and applies pixel-locating transformations to retarget the code into a given target PPE. Unlike mainstream parallel computing techniques, this technique can be applied to lightweight SIMD targets that do not provide global communication hardware or shared memory</description><subject>Application software</subject><subject>Computer architecture</subject><subject>Embedded computing</subject><subject>Embedded software</subject><subject>Global communication</subject><subject>Grain size</subject><subject>Hardware</subject><subject>Image processing</subject><subject>Optimizing compilers</subject><subject>Parallel processing</subject><issn>0190-3918</issn><issn>2332-5690</issn><isbn>9780769526379</isbn><isbn>0769526373</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AUhQcfYKxdunKTP5B45527lKBtoWARxWWZSW7jSNuUmSDUX2-KXR34OBzOx9g9h5JzwMdFvVp9lgLAlMZesExIKQptEC7ZFG0F1qAWRlq8YhlwhEIir27YbUrfAAKkVhmbv9HgYkdD2Hd52LmOikPsG0rpBNy262MYvnYpH_r8x8XjiZ4Lfcy76MI-T-GX0h273rhtouk5J-zj5fm9nhfL19mifloWgVs9FFpYXYnWKeed8JXTlVJt5YmDhAYRpSdshENvvGk2QnJqlVce_Qi5Ii4n7OF_NxDR-hDHz_G45qO1Hf3_AMgJTzE</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Sander, S.T.</creator><creator>Wills, L.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Retargeting image-processing algorithms to varying processor grain sizes</title><author>Sander, S.T. ; Wills, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-527582da4aba2b8a5844d8be1030c9993be9c2a9b6b6cf231ed4b4b9bc2a14e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Application software</topic><topic>Computer architecture</topic><topic>Embedded computing</topic><topic>Embedded software</topic><topic>Global communication</topic><topic>Grain size</topic><topic>Hardware</topic><topic>Image processing</topic><topic>Optimizing compilers</topic><topic>Parallel processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Sander, S.T.</creatorcontrib><creatorcontrib>Wills, L.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sander, S.T.</au><au>Wills, L.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Retargeting image-processing algorithms to varying processor grain sizes</atitle><btitle>2006 International Conference on Parallel Processing Workshops (ICPPW'06)</btitle><stitle>ICPPW</stitle><date>2006</date><risdate>2006</risdate><spage>8 pp.</spage><epage>383</epage><pages>8 pp.-383</pages><issn>0190-3918</issn><eissn>2332-5690</eissn><isbn>9780769526379</isbn><isbn>0769526373</isbn><abstract>Embedded computing architectures can be designed to meet a variety of application specific requirements. However, optimized hardware can require compiler support to realize the potential of the hardware. This is especially true for embedded image processing systems where significant architectural variation is possible, and targeted software can change drastically based on architectural variation. This paper presents methods to compile a single high-level source given a fundamental variation in data-parallel target architectures - processor granularity ranging from a single processor to a massively parallel processor array. The approach uses single PPE virtualization, which supports pixel-level data-parallel expressions that operate on a virtual one pixel per processing element (PPE) network and applies pixel-locating transformations to retarget the code into a given target PPE. Unlike mainstream parallel computing techniques, this technique can be applied to lightweight SIMD targets that do not provide global communication hardware or shared memory</abstract><pub>IEEE</pub><doi>10.1109/ICPPW.2006.67</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0190-3918 |
ispartof | 2006 International Conference on Parallel Processing Workshops (ICPPW'06), 2006, p.8 pp.-383 |
issn | 0190-3918 2332-5690 |
language | eng |
recordid | cdi_ieee_primary_1690723 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Computer architecture Embedded computing Embedded software Global communication Grain size Hardware Image processing Optimizing compilers Parallel processing |
title | Retargeting image-processing algorithms to varying processor grain sizes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Retargeting%20image-processing%20algorithms%20to%20varying%20processor%20grain%20sizes&rft.btitle=2006%20International%20Conference%20on%20Parallel%20Processing%20Workshops%20(ICPPW'06)&rft.au=Sander,%20S.T.&rft.date=2006&rft.spage=8%20pp.&rft.epage=383&rft.pages=8%20pp.-383&rft.issn=0190-3918&rft.eissn=2332-5690&rft.isbn=9780769526379&rft.isbn_list=0769526373&rft_id=info:doi/10.1109/ICPPW.2006.67&rft_dat=%3Cieee_6IE%3E1690723%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1690723&rfr_iscdi=true |