Refined statistical static timing analysis through learning spatial delay correlations

Statistical static timing analysis (SSTA) has been a popular research topic in recent years. A fundamental issue with applying SSTA in practice today is the lack of reliable and efficient statistical timing models (STM). Among many types of parameters required to be carefully modeled in an STM, spat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lee, B.N., Wang, L.-C., Abadir, M.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue
container_start_page 149
container_title
container_volume
creator Lee, B.N.
Wang, L.-C.
Abadir, M.S.
description Statistical static timing analysis (SSTA) has been a popular research topic in recent years. A fundamental issue with applying SSTA in practice today is the lack of reliable and efficient statistical timing models (STM). Among many types of parameters required to be carefully modeled in an STM, spatial delay correlations are recognized as having significant impact on SSTA results. In this work, we assume that exact modeling of spatial delay correlations is quite difficult, and propose an experimental methodology to resolve this issue. The modeling accuracy requirement is relaxed by allowing SSTA to impose upper bounds and lower bounds on the delay correlations. These bounds can then be refined through learning the actual delay correlations from path delay testing on silicon. We utilize SSTA as the platform for learning and propose a Bayesian approach for learning spatial delay correlations. The effectiveness of the proposed methodology is illustrated through experiments on benchmark circuits
doi_str_mv 10.1109/DAC.2006.229198
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1688779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1688779</ieee_id><sourcerecordid>1688779</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-ffda26c7818d45aa735ca62b041a409c7979a029684e6cb2150cd184df7bb3be3</originalsourceid><addsrcrecordid>eNotjEtLw0AURgdUsNauXbjJH0i8dybzWpb4hIIgKu7KzWTSjqRJyYyL_HsjdfUd-A6HsRuEAhHs3f26KjiAKji3aM0Zu0JppRXCoDpnC9DC5AjwdclWMX4DAKIwvJQL9vnm29D7JouJUogpOOpO7LIUDqHfZdRTN8UQs7Qfh5_dPus8jf3fE4-zN_uN72jK3DCOM6Qw9PGaXbTURb_63yX7eHx4r57zzevTS7Xe5AFBprxtG-LKaYOmKSWRFtKR4jWUSCVYp622BNwqU3rlao4SXIOmbFpd16L2YsluT93gvd8ex3CgcdqiMkZrK34B_DhSlw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Refined statistical static timing analysis through learning spatial delay correlations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lee, B.N. ; Wang, L.-C. ; Abadir, M.S.</creator><creatorcontrib>Lee, B.N. ; Wang, L.-C. ; Abadir, M.S.</creatorcontrib><description>Statistical static timing analysis (SSTA) has been a popular research topic in recent years. A fundamental issue with applying SSTA in practice today is the lack of reliable and efficient statistical timing models (STM). Among many types of parameters required to be carefully modeled in an STM, spatial delay correlations are recognized as having significant impact on SSTA results. In this work, we assume that exact modeling of spatial delay correlations is quite difficult, and propose an experimental methodology to resolve this issue. The modeling accuracy requirement is relaxed by allowing SSTA to impose upper bounds and lower bounds on the delay correlations. These bounds can then be refined through learning the actual delay correlations from path delay testing on silicon. We utilize SSTA as the platform for learning and propose a Bayesian approach for learning spatial delay correlations. The effectiveness of the proposed methodology is illustrated through experiments on benchmark circuits</description><identifier>ISSN: 0738-100X</identifier><identifier>ISBN: 1595933816</identifier><identifier>ISBN: 9781595933812</identifier><identifier>DOI: 10.1109/DAC.2006.229198</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Bayesian learning ; Bayesian methods ; Circuits ; delay correlations ; Delay effects ; Design ; Environmental economics ; Impedance ; Performance analysis ; Silicon ; Spatial resolution ; Statistical timing ; Testing ; Timing</subject><ispartof>2006 43rd ACM/IEEE Design Automation Conference, 2006, p.149-154</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1688779$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2057,4049,4050,27924,54757,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1688779$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, B.N.</creatorcontrib><creatorcontrib>Wang, L.-C.</creatorcontrib><creatorcontrib>Abadir, M.S.</creatorcontrib><title>Refined statistical static timing analysis through learning spatial delay correlations</title><title>2006 43rd ACM/IEEE Design Automation Conference</title><addtitle>DAC</addtitle><description>Statistical static timing analysis (SSTA) has been a popular research topic in recent years. A fundamental issue with applying SSTA in practice today is the lack of reliable and efficient statistical timing models (STM). Among many types of parameters required to be carefully modeled in an STM, spatial delay correlations are recognized as having significant impact on SSTA results. In this work, we assume that exact modeling of spatial delay correlations is quite difficult, and propose an experimental methodology to resolve this issue. The modeling accuracy requirement is relaxed by allowing SSTA to impose upper bounds and lower bounds on the delay correlations. These bounds can then be refined through learning the actual delay correlations from path delay testing on silicon. We utilize SSTA as the platform for learning and propose a Bayesian approach for learning spatial delay correlations. The effectiveness of the proposed methodology is illustrated through experiments on benchmark circuits</description><subject>Algorithms</subject><subject>Bayesian learning</subject><subject>Bayesian methods</subject><subject>Circuits</subject><subject>delay correlations</subject><subject>Delay effects</subject><subject>Design</subject><subject>Environmental economics</subject><subject>Impedance</subject><subject>Performance analysis</subject><subject>Silicon</subject><subject>Spatial resolution</subject><subject>Statistical timing</subject><subject>Testing</subject><subject>Timing</subject><issn>0738-100X</issn><isbn>1595933816</isbn><isbn>9781595933812</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLw0AURgdUsNauXbjJH0i8dybzWpb4hIIgKu7KzWTSjqRJyYyL_HsjdfUd-A6HsRuEAhHs3f26KjiAKji3aM0Zu0JppRXCoDpnC9DC5AjwdclWMX4DAKIwvJQL9vnm29D7JouJUogpOOpO7LIUDqHfZdRTN8UQs7Qfh5_dPus8jf3fE4-zN_uN72jK3DCOM6Qw9PGaXbTURb_63yX7eHx4r57zzevTS7Xe5AFBprxtG-LKaYOmKSWRFtKR4jWUSCVYp622BNwqU3rlao4SXIOmbFpd16L2YsluT93gvd8ex3CgcdqiMkZrK34B_DhSlw</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lee, B.N.</creator><creator>Wang, L.-C.</creator><creator>Abadir, M.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Refined statistical static timing analysis through learning spatial delay correlations</title><author>Lee, B.N. ; Wang, L.-C. ; Abadir, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-ffda26c7818d45aa735ca62b041a409c7979a029684e6cb2150cd184df7bb3be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Bayesian learning</topic><topic>Bayesian methods</topic><topic>Circuits</topic><topic>delay correlations</topic><topic>Delay effects</topic><topic>Design</topic><topic>Environmental economics</topic><topic>Impedance</topic><topic>Performance analysis</topic><topic>Silicon</topic><topic>Spatial resolution</topic><topic>Statistical timing</topic><topic>Testing</topic><topic>Timing</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, B.N.</creatorcontrib><creatorcontrib>Wang, L.-C.</creatorcontrib><creatorcontrib>Abadir, M.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, B.N.</au><au>Wang, L.-C.</au><au>Abadir, M.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Refined statistical static timing analysis through learning spatial delay correlations</atitle><btitle>2006 43rd ACM/IEEE Design Automation Conference</btitle><stitle>DAC</stitle><date>2006</date><risdate>2006</risdate><spage>149</spage><epage>154</epage><pages>149-154</pages><issn>0738-100X</issn><isbn>1595933816</isbn><isbn>9781595933812</isbn><abstract>Statistical static timing analysis (SSTA) has been a popular research topic in recent years. A fundamental issue with applying SSTA in practice today is the lack of reliable and efficient statistical timing models (STM). Among many types of parameters required to be carefully modeled in an STM, spatial delay correlations are recognized as having significant impact on SSTA results. In this work, we assume that exact modeling of spatial delay correlations is quite difficult, and propose an experimental methodology to resolve this issue. The modeling accuracy requirement is relaxed by allowing SSTA to impose upper bounds and lower bounds on the delay correlations. These bounds can then be refined through learning the actual delay correlations from path delay testing on silicon. We utilize SSTA as the platform for learning and propose a Bayesian approach for learning spatial delay correlations. The effectiveness of the proposed methodology is illustrated through experiments on benchmark circuits</abstract><pub>IEEE</pub><doi>10.1109/DAC.2006.229198</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0738-100X
ispartof 2006 43rd ACM/IEEE Design Automation Conference, 2006, p.149-154
issn 0738-100X
language eng
recordid cdi_ieee_primary_1688779
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Bayesian learning
Bayesian methods
Circuits
delay correlations
Delay effects
Design
Environmental economics
Impedance
Performance analysis
Silicon
Spatial resolution
Statistical timing
Testing
Timing
title Refined statistical static timing analysis through learning spatial delay correlations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Refined%20statistical%20static%20timing%20analysis%20through%20learning%20spatial%20delay%20correlations&rft.btitle=2006%2043rd%20ACM/IEEE%20Design%20Automation%20Conference&rft.au=Lee,%20B.N.&rft.date=2006&rft.spage=149&rft.epage=154&rft.pages=149-154&rft.issn=0738-100X&rft.isbn=1595933816&rft.isbn_list=9781595933812&rft_id=info:doi/10.1109/DAC.2006.229198&rft_dat=%3Cieee_6IE%3E1688779%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1688779&rfr_iscdi=true