Segmentation Tracking and Recognition Based on Foreground-Background Absolute Features, Simplified SIFT, and Particle Filters

We propose an approach to tracking and recognition based on segmentation by scanning foreground-background absolute difference (FBAD) features, simplified scale-invariant feature transform (s-SIFT), and evolutionary particle filter. Particle filter is shown to be efficient in visual tracking due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yong-Gun Jo, Ja-Yong Lee, Hoon Kang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1284
container_issue
container_start_page 1279
container_title
container_volume
creator Yong-Gun Jo
Ja-Yong Lee
Hoon Kang
description We propose an approach to tracking and recognition based on segmentation by scanning foreground-background absolute difference (FBAD) features, simplified scale-invariant feature transform (s-SIFT), and evolutionary particle filter. Particle filter is shown to be efficient in visual tracking due to its sequential propagation ability of the conditional posterior density of the states, i.e., the tracking parameters. First, we obtain FBAD features and perform segmentation tracking of moving objects by 4-directional scanning. Second, the segmentation mask is applied to the SIFT key-points to obtain the key-points of moving objects. Third, those reduced key-points and the associated key-descriptors are found by our simplified technique. Once the reference SIFT key-descriptors are registered, two different matching procedures, a full-search technique and an evolutionary particle filter approach, are applied. The experiments show that both schemes are robust and efficient in visual tracking and recognition even if a target object is occluded in a cluttered background.
doi_str_mv 10.1109/CEC.2006.1688456
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1688456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1688456</ieee_id><sourcerecordid>1688456</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8fa187ae1a3976a6434f350697f868b810eaab7c9832a4e64713a2c6fd94bc633</originalsourceid><addsrcrecordid>eNotUEtrwkAYXPqAWuu90Et-gLG72XUfRw2mFYSWmkNv8iX5EraNieyuhx787w0qDMzAPA5DyDOjM8aoeU1X6SyhVM6Y1FrM5Q0ZMSNYTGkib8nEKE0HcCO0Su4Gj2oTK6W_H8ij9z-UMjFnZkROW2z22AUItu-i3EH5a7smgq6KvrDsm86ejSV4rKJBZL3DxvXHroqXQ_Yio0Xh-_YYMMoQwtGhn0Zbuz-0trZDbbvO8ul58hNcsGU75Gwb0Pkncl9D63Fy5THJs1Wevsebj7d1utjE1tAQ6xqYVoAMuFESpOCi5nMqjaq11IVmFAEKVRrNExAohWIcklLWlRFFKTkfk5fLrEXE3cHZPbi_3fU4_g_EymCy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Segmentation Tracking and Recognition Based on Foreground-Background Absolute Features, Simplified SIFT, and Particle Filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yong-Gun Jo ; Ja-Yong Lee ; Hoon Kang</creator><creatorcontrib>Yong-Gun Jo ; Ja-Yong Lee ; Hoon Kang</creatorcontrib><description>We propose an approach to tracking and recognition based on segmentation by scanning foreground-background absolute difference (FBAD) features, simplified scale-invariant feature transform (s-SIFT), and evolutionary particle filter. Particle filter is shown to be efficient in visual tracking due to its sequential propagation ability of the conditional posterior density of the states, i.e., the tracking parameters. First, we obtain FBAD features and perform segmentation tracking of moving objects by 4-directional scanning. Second, the segmentation mask is applied to the SIFT key-points to obtain the key-points of moving objects. Third, those reduced key-points and the associated key-descriptors are found by our simplified technique. Once the reference SIFT key-descriptors are registered, two different matching procedures, a full-search technique and an evolutionary particle filter approach, are applied. The experiments show that both schemes are robust and efficient in visual tracking and recognition even if a target object is occluded in a cluttered background.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 9780780394872</identifier><identifier>ISBN: 0780394879</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/CEC.2006.1688456</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active contours ; Bayesian methods ; Intelligent robots ; Level measurement ; Machine intelligence ; Particle filters ; Particle tracking ; Robot vision systems ; Shape ; Target tracking</subject><ispartof>2006 IEEE International Conference on Evolutionary Computation, 2006, p.1279-1284</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1688456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2052,4036,4037,27902,54733,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1688456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yong-Gun Jo</creatorcontrib><creatorcontrib>Ja-Yong Lee</creatorcontrib><creatorcontrib>Hoon Kang</creatorcontrib><title>Segmentation Tracking and Recognition Based on Foreground-Background Absolute Features, Simplified SIFT, and Particle Filters</title><title>2006 IEEE International Conference on Evolutionary Computation</title><addtitle>CEC</addtitle><description>We propose an approach to tracking and recognition based on segmentation by scanning foreground-background absolute difference (FBAD) features, simplified scale-invariant feature transform (s-SIFT), and evolutionary particle filter. Particle filter is shown to be efficient in visual tracking due to its sequential propagation ability of the conditional posterior density of the states, i.e., the tracking parameters. First, we obtain FBAD features and perform segmentation tracking of moving objects by 4-directional scanning. Second, the segmentation mask is applied to the SIFT key-points to obtain the key-points of moving objects. Third, those reduced key-points and the associated key-descriptors are found by our simplified technique. Once the reference SIFT key-descriptors are registered, two different matching procedures, a full-search technique and an evolutionary particle filter approach, are applied. The experiments show that both schemes are robust and efficient in visual tracking and recognition even if a target object is occluded in a cluttered background.</description><subject>Active contours</subject><subject>Bayesian methods</subject><subject>Intelligent robots</subject><subject>Level measurement</subject><subject>Machine intelligence</subject><subject>Particle filters</subject><subject>Particle tracking</subject><subject>Robot vision systems</subject><subject>Shape</subject><subject>Target tracking</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>9780780394872</isbn><isbn>0780394879</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUEtrwkAYXPqAWuu90Et-gLG72XUfRw2mFYSWmkNv8iX5EraNieyuhx787w0qDMzAPA5DyDOjM8aoeU1X6SyhVM6Y1FrM5Q0ZMSNYTGkib8nEKE0HcCO0Su4Gj2oTK6W_H8ij9z-UMjFnZkROW2z22AUItu-i3EH5a7smgq6KvrDsm86ejSV4rKJBZL3DxvXHroqXQ_Yio0Xh-_YYMMoQwtGhn0Zbuz-0trZDbbvO8ul58hNcsGU75Gwb0Pkncl9D63Fy5THJs1Wevsebj7d1utjE1tAQ6xqYVoAMuFESpOCi5nMqjaq11IVmFAEKVRrNExAohWIcklLWlRFFKTkfk5fLrEXE3cHZPbi_3fU4_g_EymCy</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Yong-Gun Jo</creator><creator>Ja-Yong Lee</creator><creator>Hoon Kang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Segmentation Tracking and Recognition Based on Foreground-Background Absolute Features, Simplified SIFT, and Particle Filters</title><author>Yong-Gun Jo ; Ja-Yong Lee ; Hoon Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8fa187ae1a3976a6434f350697f868b810eaab7c9832a4e64713a2c6fd94bc633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Active contours</topic><topic>Bayesian methods</topic><topic>Intelligent robots</topic><topic>Level measurement</topic><topic>Machine intelligence</topic><topic>Particle filters</topic><topic>Particle tracking</topic><topic>Robot vision systems</topic><topic>Shape</topic><topic>Target tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yong-Gun Jo</creatorcontrib><creatorcontrib>Ja-Yong Lee</creatorcontrib><creatorcontrib>Hoon Kang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yong-Gun Jo</au><au>Ja-Yong Lee</au><au>Hoon Kang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Segmentation Tracking and Recognition Based on Foreground-Background Absolute Features, Simplified SIFT, and Particle Filters</atitle><btitle>2006 IEEE International Conference on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2006</date><risdate>2006</risdate><spage>1279</spage><epage>1284</epage><pages>1279-1284</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>9780780394872</isbn><isbn>0780394879</isbn><abstract>We propose an approach to tracking and recognition based on segmentation by scanning foreground-background absolute difference (FBAD) features, simplified scale-invariant feature transform (s-SIFT), and evolutionary particle filter. Particle filter is shown to be efficient in visual tracking due to its sequential propagation ability of the conditional posterior density of the states, i.e., the tracking parameters. First, we obtain FBAD features and perform segmentation tracking of moving objects by 4-directional scanning. Second, the segmentation mask is applied to the SIFT key-points to obtain the key-points of moving objects. Third, those reduced key-points and the associated key-descriptors are found by our simplified technique. Once the reference SIFT key-descriptors are registered, two different matching procedures, a full-search technique and an evolutionary particle filter approach, are applied. The experiments show that both schemes are robust and efficient in visual tracking and recognition even if a target object is occluded in a cluttered background.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2006.1688456</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2006 IEEE International Conference on Evolutionary Computation, 2006, p.1279-1284
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_1688456
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active contours
Bayesian methods
Intelligent robots
Level measurement
Machine intelligence
Particle filters
Particle tracking
Robot vision systems
Shape
Target tracking
title Segmentation Tracking and Recognition Based on Foreground-Background Absolute Features, Simplified SIFT, and Particle Filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Segmentation%20Tracking%20and%20Recognition%20Based%20on%20Foreground-Background%20Absolute%20Features,%20Simplified%20SIFT,%20and%20Particle%20Filters&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Evolutionary%20Computation&rft.au=Yong-Gun%20Jo&rft.date=2006&rft.spage=1279&rft.epage=1284&rft.pages=1279-1284&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=9780780394872&rft.isbn_list=0780394879&rft_id=info:doi/10.1109/CEC.2006.1688456&rft_dat=%3Cieee_6IE%3E1688456%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1688456&rfr_iscdi=true