A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation

To resolve the problems of particle impoverishment and sample size dependency, particle swarm optimization (PSO) is introduced into generic particle filter (PF). This novel method, particle swarm optimized particle filter (PSOPF), incorporates the newest observations into sampling process and also o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guofeng Tong, Zheng Fang, Xinhe Xu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue
container_start_page 438
container_title
container_volume
creator Guofeng Tong
Zheng Fang
Xinhe Xu
description To resolve the problems of particle impoverishment and sample size dependency, particle swarm optimization (PSO) is introduced into generic particle filter (PF). This novel method, particle swarm optimized particle filter (PSOPF), incorporates the newest observations into sampling process and also optimizes that process. Through particle swarm optimization, particle samples are moved towards regions where particles have larger values of posterior density function. As a result, the impoverishment of particle filter is overcome and the sample size necessary for accurate state estimation is reduced dramatically. Two experiments show the validation of our method.
doi_str_mv 10.1109/CEC.2006.1688342
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1688342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1688342</ieee_id><sourcerecordid>1688342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-13ed97e69e9d6397733a3684250d9308cedc4bdb5e9159b04ff2d0104cc9bee43</originalsourceid><addsrcrecordid>eNpFkFtLw0AUhBcvYK19F3zZP5B49pLsnscS2ioUW6iCb2WTPYGVpC2bBam_3oAFYWAePmYGhrFHAbkQgM_VosolQJmL0lql5RWbCNQiA5DlNZuhsTBKobZG3owMLGbG2M87dj8MXwBCFwInbDvnWxdTaDriu28Xe745pdCHH_L_YBm6RJG3x8jfjocuHMhFvjsPiXq-Sy4RXwxjyKVwPDyw29Z1A80uPmUfy8V79ZKtN6vXar7OGillyoQij4ZKJPSlQmOUcqq0WhbgUYFtyDe69nVBKAqsQbet9CBANw3WRFpN2dNfbyCi_SmO8_G8v5yhfgEQplDV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guofeng Tong ; Zheng Fang ; Xinhe Xu</creator><creatorcontrib>Guofeng Tong ; Zheng Fang ; Xinhe Xu</creatorcontrib><description>To resolve the problems of particle impoverishment and sample size dependency, particle swarm optimization (PSO) is introduced into generic particle filter (PF). This novel method, particle swarm optimized particle filter (PSOPF), incorporates the newest observations into sampling process and also optimizes that process. Through particle swarm optimization, particle samples are moved towards regions where particles have larger values of posterior density function. As a result, the impoverishment of particle filter is overcome and the sample size necessary for accurate state estimation is reduced dramatically. Two experiments show the validation of our method.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 9780780394872</identifier><identifier>ISBN: 0780394879</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/CEC.2006.1688342</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Computational efficiency ; Monte Carlo methods ; Nonlinear systems ; Particle filters ; Particle swarm optimization ; Probability distribution ; Proposals ; Sampling methods ; State estimation</subject><ispartof>2006 IEEE International Conference on Evolutionary Computation, 2006, p.438-442</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-13ed97e69e9d6397733a3684250d9308cedc4bdb5e9159b04ff2d0104cc9bee43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1688342$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,797,2059,4051,4052,27930,54763,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1688342$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guofeng Tong</creatorcontrib><creatorcontrib>Zheng Fang</creatorcontrib><creatorcontrib>Xinhe Xu</creatorcontrib><title>A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation</title><title>2006 IEEE International Conference on Evolutionary Computation</title><addtitle>CEC</addtitle><description>To resolve the problems of particle impoverishment and sample size dependency, particle swarm optimization (PSO) is introduced into generic particle filter (PF). This novel method, particle swarm optimized particle filter (PSOPF), incorporates the newest observations into sampling process and also optimizes that process. Through particle swarm optimization, particle samples are moved towards regions where particles have larger values of posterior density function. As a result, the impoverishment of particle filter is overcome and the sample size necessary for accurate state estimation is reduced dramatically. Two experiments show the validation of our method.</description><subject>Bayesian methods</subject><subject>Computational efficiency</subject><subject>Monte Carlo methods</subject><subject>Nonlinear systems</subject><subject>Particle filters</subject><subject>Particle swarm optimization</subject><subject>Probability distribution</subject><subject>Proposals</subject><subject>Sampling methods</subject><subject>State estimation</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>9780780394872</isbn><isbn>0780394879</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkFtLw0AUhBcvYK19F3zZP5B49pLsnscS2ioUW6iCb2WTPYGVpC2bBam_3oAFYWAePmYGhrFHAbkQgM_VosolQJmL0lql5RWbCNQiA5DlNZuhsTBKobZG3owMLGbG2M87dj8MXwBCFwInbDvnWxdTaDriu28Xe745pdCHH_L_YBm6RJG3x8jfjocuHMhFvjsPiXq-Sy4RXwxjyKVwPDyw29Z1A80uPmUfy8V79ZKtN6vXar7OGillyoQij4ZKJPSlQmOUcqq0WhbgUYFtyDe69nVBKAqsQbet9CBANw3WRFpN2dNfbyCi_SmO8_G8v5yhfgEQplDV</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Guofeng Tong</creator><creator>Zheng Fang</creator><creator>Xinhe Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation</title><author>Guofeng Tong ; Zheng Fang ; Xinhe Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-13ed97e69e9d6397733a3684250d9308cedc4bdb5e9159b04ff2d0104cc9bee43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bayesian methods</topic><topic>Computational efficiency</topic><topic>Monte Carlo methods</topic><topic>Nonlinear systems</topic><topic>Particle filters</topic><topic>Particle swarm optimization</topic><topic>Probability distribution</topic><topic>Proposals</topic><topic>Sampling methods</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guofeng Tong</creatorcontrib><creatorcontrib>Zheng Fang</creatorcontrib><creatorcontrib>Xinhe Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guofeng Tong</au><au>Zheng Fang</au><au>Xinhe Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation</atitle><btitle>2006 IEEE International Conference on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2006</date><risdate>2006</risdate><spage>438</spage><epage>442</epage><pages>438-442</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>9780780394872</isbn><isbn>0780394879</isbn><abstract>To resolve the problems of particle impoverishment and sample size dependency, particle swarm optimization (PSO) is introduced into generic particle filter (PF). This novel method, particle swarm optimized particle filter (PSOPF), incorporates the newest observations into sampling process and also optimizes that process. Through particle swarm optimization, particle samples are moved towards regions where particles have larger values of posterior density function. As a result, the impoverishment of particle filter is overcome and the sample size necessary for accurate state estimation is reduced dramatically. Two experiments show the validation of our method.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2006.1688342</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2006 IEEE International Conference on Evolutionary Computation, 2006, p.438-442
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_1688342
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Computational efficiency
Monte Carlo methods
Nonlinear systems
Particle filters
Particle swarm optimization
Probability distribution
Proposals
Sampling methods
State estimation
title A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Particle%20Swarm%20Optimized%20Particle%20Filter%20for%20Nonlinear%20System%20State%20Estimation&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Evolutionary%20Computation&rft.au=Guofeng%20Tong&rft.date=2006&rft.spage=438&rft.epage=442&rft.pages=438-442&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=9780780394872&rft.isbn_list=0780394879&rft_id=info:doi/10.1109/CEC.2006.1688342&rft_dat=%3Cieee_6IE%3E1688342%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1688342&rfr_iscdi=true