A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation
To resolve the problems of particle impoverishment and sample size dependency, particle swarm optimization (PSO) is introduced into generic particle filter (PF). This novel method, particle swarm optimized particle filter (PSOPF), incorporates the newest observations into sampling process and also o...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | |
container_start_page | 438 |
container_title | |
container_volume | |
creator | Guofeng Tong Zheng Fang Xinhe Xu |
description | To resolve the problems of particle impoverishment and sample size dependency, particle swarm optimization (PSO) is introduced into generic particle filter (PF). This novel method, particle swarm optimized particle filter (PSOPF), incorporates the newest observations into sampling process and also optimizes that process. Through particle swarm optimization, particle samples are moved towards regions where particles have larger values of posterior density function. As a result, the impoverishment of particle filter is overcome and the sample size necessary for accurate state estimation is reduced dramatically. Two experiments show the validation of our method. |
doi_str_mv | 10.1109/CEC.2006.1688342 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1688342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1688342</ieee_id><sourcerecordid>1688342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-13ed97e69e9d6397733a3684250d9308cedc4bdb5e9159b04ff2d0104cc9bee43</originalsourceid><addsrcrecordid>eNpFkFtLw0AUhBcvYK19F3zZP5B49pLsnscS2ioUW6iCb2WTPYGVpC2bBam_3oAFYWAePmYGhrFHAbkQgM_VosolQJmL0lql5RWbCNQiA5DlNZuhsTBKobZG3owMLGbG2M87dj8MXwBCFwInbDvnWxdTaDriu28Xe745pdCHH_L_YBm6RJG3x8jfjocuHMhFvjsPiXq-Sy4RXwxjyKVwPDyw29Z1A80uPmUfy8V79ZKtN6vXar7OGillyoQij4ZKJPSlQmOUcqq0WhbgUYFtyDe69nVBKAqsQbet9CBANw3WRFpN2dNfbyCi_SmO8_G8v5yhfgEQplDV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guofeng Tong ; Zheng Fang ; Xinhe Xu</creator><creatorcontrib>Guofeng Tong ; Zheng Fang ; Xinhe Xu</creatorcontrib><description>To resolve the problems of particle impoverishment and sample size dependency, particle swarm optimization (PSO) is introduced into generic particle filter (PF). This novel method, particle swarm optimized particle filter (PSOPF), incorporates the newest observations into sampling process and also optimizes that process. Through particle swarm optimization, particle samples are moved towards regions where particles have larger values of posterior density function. As a result, the impoverishment of particle filter is overcome and the sample size necessary for accurate state estimation is reduced dramatically. Two experiments show the validation of our method.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 9780780394872</identifier><identifier>ISBN: 0780394879</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/CEC.2006.1688342</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Computational efficiency ; Monte Carlo methods ; Nonlinear systems ; Particle filters ; Particle swarm optimization ; Probability distribution ; Proposals ; Sampling methods ; State estimation</subject><ispartof>2006 IEEE International Conference on Evolutionary Computation, 2006, p.438-442</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-13ed97e69e9d6397733a3684250d9308cedc4bdb5e9159b04ff2d0104cc9bee43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1688342$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,797,2059,4051,4052,27930,54763,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1688342$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guofeng Tong</creatorcontrib><creatorcontrib>Zheng Fang</creatorcontrib><creatorcontrib>Xinhe Xu</creatorcontrib><title>A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation</title><title>2006 IEEE International Conference on Evolutionary Computation</title><addtitle>CEC</addtitle><description>To resolve the problems of particle impoverishment and sample size dependency, particle swarm optimization (PSO) is introduced into generic particle filter (PF). This novel method, particle swarm optimized particle filter (PSOPF), incorporates the newest observations into sampling process and also optimizes that process. Through particle swarm optimization, particle samples are moved towards regions where particles have larger values of posterior density function. As a result, the impoverishment of particle filter is overcome and the sample size necessary for accurate state estimation is reduced dramatically. Two experiments show the validation of our method.</description><subject>Bayesian methods</subject><subject>Computational efficiency</subject><subject>Monte Carlo methods</subject><subject>Nonlinear systems</subject><subject>Particle filters</subject><subject>Particle swarm optimization</subject><subject>Probability distribution</subject><subject>Proposals</subject><subject>Sampling methods</subject><subject>State estimation</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>9780780394872</isbn><isbn>0780394879</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkFtLw0AUhBcvYK19F3zZP5B49pLsnscS2ioUW6iCb2WTPYGVpC2bBam_3oAFYWAePmYGhrFHAbkQgM_VosolQJmL0lql5RWbCNQiA5DlNZuhsTBKobZG3owMLGbG2M87dj8MXwBCFwInbDvnWxdTaDriu28Xe745pdCHH_L_YBm6RJG3x8jfjocuHMhFvjsPiXq-Sy4RXwxjyKVwPDyw29Z1A80uPmUfy8V79ZKtN6vXar7OGillyoQij4ZKJPSlQmOUcqq0WhbgUYFtyDe69nVBKAqsQbet9CBANw3WRFpN2dNfbyCi_SmO8_G8v5yhfgEQplDV</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Guofeng Tong</creator><creator>Zheng Fang</creator><creator>Xinhe Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation</title><author>Guofeng Tong ; Zheng Fang ; Xinhe Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-13ed97e69e9d6397733a3684250d9308cedc4bdb5e9159b04ff2d0104cc9bee43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bayesian methods</topic><topic>Computational efficiency</topic><topic>Monte Carlo methods</topic><topic>Nonlinear systems</topic><topic>Particle filters</topic><topic>Particle swarm optimization</topic><topic>Probability distribution</topic><topic>Proposals</topic><topic>Sampling methods</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guofeng Tong</creatorcontrib><creatorcontrib>Zheng Fang</creatorcontrib><creatorcontrib>Xinhe Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guofeng Tong</au><au>Zheng Fang</au><au>Xinhe Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation</atitle><btitle>2006 IEEE International Conference on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2006</date><risdate>2006</risdate><spage>438</spage><epage>442</epage><pages>438-442</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>9780780394872</isbn><isbn>0780394879</isbn><abstract>To resolve the problems of particle impoverishment and sample size dependency, particle swarm optimization (PSO) is introduced into generic particle filter (PF). This novel method, particle swarm optimized particle filter (PSOPF), incorporates the newest observations into sampling process and also optimizes that process. Through particle swarm optimization, particle samples are moved towards regions where particles have larger values of posterior density function. As a result, the impoverishment of particle filter is overcome and the sample size necessary for accurate state estimation is reduced dramatically. Two experiments show the validation of our method.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2006.1688342</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2006 IEEE International Conference on Evolutionary Computation, 2006, p.438-442 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_1688342 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Computational efficiency Monte Carlo methods Nonlinear systems Particle filters Particle swarm optimization Probability distribution Proposals Sampling methods State estimation |
title | A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Particle%20Swarm%20Optimized%20Particle%20Filter%20for%20Nonlinear%20System%20State%20Estimation&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Evolutionary%20Computation&rft.au=Guofeng%20Tong&rft.date=2006&rft.spage=438&rft.epage=442&rft.pages=438-442&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=9780780394872&rft.isbn_list=0780394879&rft_id=info:doi/10.1109/CEC.2006.1688342&rft_dat=%3Cieee_6IE%3E1688342%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1688342&rfr_iscdi=true |