A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling
A multiprocessor scheduling problem is defined as the assignment of a given set of tasks to a set of processors. These tasks should be assigned in a way such that the total execution time is minimized and certain criteria are met. A wide range of solutions and heuristics have been proposed to solve...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | |
container_start_page | 340 |
container_title | |
container_volume | |
creator | Jelodar, M.S. Fakhraie, S.N. Montazeri, F. Fakhraie, S.M. Ahmadabadi, M.N. |
description | A multiprocessor scheduling problem is defined as the assignment of a given set of tasks to a set of processors. These tasks should be assigned in a way such that the total execution time is minimized and certain criteria are met. A wide range of solutions and heuristics have been proposed to solve this important system optimization problem. In this paper, we propose a novel representation to solve the task scheduling problem using genetic algorithm (GA). This representation is novel not only in the way it presents task scheduling, but also in that the length of that representation is intelligently adaptable to the given problem. Task duplication is allowed in our method and it is capable of spanning a large proportion of the solution space without the need for penalty/rewards or adding repair mechanisms whilst always generating valid chromosomes. Due to this new representation, order of the search space has been reduced; consequently, the proposed approach outperforms some recently studied GA based scheduling methods over 120 times with respect to the number of fitness evaluations. |
doi_str_mv | 10.1109/CEC.2006.1688328 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1688328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1688328</ieee_id><sourcerecordid>1688328</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-49ddc7ecc008ca4c352577cc99232675c01db8b0b72d25eb77a37d4493f98a723</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQcfYK3dC27yBybeeSR3ZllDrWJF0AruymTmth1Nk5JJF_57CxYOnMV3-BaHsVsBuRBg76tZlUuAMhelMUqaMzYSVgsOIMtzNrFo4BhltUF5cWRgLEc0X1fsOqVvAKELYUfsZZq9076nRO3ghti12brrszm1NETPp82m6-Ow3fEHlyhkr4dmiPu-85TScbZ06Sf78FsKhya2mxt2uXZNosmpx-zzcbasnvjibf5cTRc8CiwGrm0IHsl7AOOd9qqQBaL31kolSyw8iFCbGmqUQRZUIzqFQWur1tY4lGrM7v69kYhW-z7uXP-7Ov2g_gCsmE9M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jelodar, M.S. ; Fakhraie, S.N. ; Montazeri, F. ; Fakhraie, S.M. ; Ahmadabadi, M.N.</creator><creatorcontrib>Jelodar, M.S. ; Fakhraie, S.N. ; Montazeri, F. ; Fakhraie, S.M. ; Ahmadabadi, M.N.</creatorcontrib><description>A multiprocessor scheduling problem is defined as the assignment of a given set of tasks to a set of processors. These tasks should be assigned in a way such that the total execution time is minimized and certain criteria are met. A wide range of solutions and heuristics have been proposed to solve this important system optimization problem. In this paper, we propose a novel representation to solve the task scheduling problem using genetic algorithm (GA). This representation is novel not only in the way it presents task scheduling, but also in that the length of that representation is intelligently adaptable to the given problem. Task duplication is allowed in our method and it is capable of spanning a large proportion of the solution space without the need for penalty/rewards or adding repair mechanisms whilst always generating valid chromosomes. Due to this new representation, order of the search space has been reduced; consequently, the proposed approach outperforms some recently studied GA based scheduling methods over 120 times with respect to the number of fitness evaluations.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 9780780394872</identifier><identifier>ISBN: 0780394879</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/CEC.2006.1688328</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Clustering algorithms ; Cost function ; Genetic algorithms ; Optimal scheduling ; Parallel processing ; Processor scheduling ; Scheduling algorithm ; Time factors ; Timing</subject><ispartof>2006 IEEE International Conference on Evolutionary Computation, 2006, p.340-347</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1688328$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2051,4035,4036,27904,54737,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1688328$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jelodar, M.S.</creatorcontrib><creatorcontrib>Fakhraie, S.N.</creatorcontrib><creatorcontrib>Montazeri, F.</creatorcontrib><creatorcontrib>Fakhraie, S.M.</creatorcontrib><creatorcontrib>Ahmadabadi, M.N.</creatorcontrib><title>A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling</title><title>2006 IEEE International Conference on Evolutionary Computation</title><addtitle>CEC</addtitle><description>A multiprocessor scheduling problem is defined as the assignment of a given set of tasks to a set of processors. These tasks should be assigned in a way such that the total execution time is minimized and certain criteria are met. A wide range of solutions and heuristics have been proposed to solve this important system optimization problem. In this paper, we propose a novel representation to solve the task scheduling problem using genetic algorithm (GA). This representation is novel not only in the way it presents task scheduling, but also in that the length of that representation is intelligently adaptable to the given problem. Task duplication is allowed in our method and it is capable of spanning a large proportion of the solution space without the need for penalty/rewards or adding repair mechanisms whilst always generating valid chromosomes. Due to this new representation, order of the search space has been reduced; consequently, the proposed approach outperforms some recently studied GA based scheduling methods over 120 times with respect to the number of fitness evaluations.</description><subject>Biological cells</subject><subject>Clustering algorithms</subject><subject>Cost function</subject><subject>Genetic algorithms</subject><subject>Optimal scheduling</subject><subject>Parallel processing</subject><subject>Processor scheduling</subject><subject>Scheduling algorithm</subject><subject>Time factors</subject><subject>Timing</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>9780780394872</isbn><isbn>0780394879</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLw0AUhQcfYK3dC27yBybeeSR3ZllDrWJF0AruymTmth1Nk5JJF_57CxYOnMV3-BaHsVsBuRBg76tZlUuAMhelMUqaMzYSVgsOIMtzNrFo4BhltUF5cWRgLEc0X1fsOqVvAKELYUfsZZq9076nRO3ghti12brrszm1NETPp82m6-Ow3fEHlyhkr4dmiPu-85TScbZ06Sf78FsKhya2mxt2uXZNosmpx-zzcbasnvjibf5cTRc8CiwGrm0IHsl7AOOd9qqQBaL31kolSyw8iFCbGmqUQRZUIzqFQWur1tY4lGrM7v69kYhW-z7uXP-7Ov2g_gCsmE9M</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Jelodar, M.S.</creator><creator>Fakhraie, S.N.</creator><creator>Montazeri, F.</creator><creator>Fakhraie, S.M.</creator><creator>Ahmadabadi, M.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling</title><author>Jelodar, M.S. ; Fakhraie, S.N. ; Montazeri, F. ; Fakhraie, S.M. ; Ahmadabadi, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-49ddc7ecc008ca4c352577cc99232675c01db8b0b72d25eb77a37d4493f98a723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological cells</topic><topic>Clustering algorithms</topic><topic>Cost function</topic><topic>Genetic algorithms</topic><topic>Optimal scheduling</topic><topic>Parallel processing</topic><topic>Processor scheduling</topic><topic>Scheduling algorithm</topic><topic>Time factors</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jelodar, M.S.</creatorcontrib><creatorcontrib>Fakhraie, S.N.</creatorcontrib><creatorcontrib>Montazeri, F.</creatorcontrib><creatorcontrib>Fakhraie, S.M.</creatorcontrib><creatorcontrib>Ahmadabadi, M.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jelodar, M.S.</au><au>Fakhraie, S.N.</au><au>Montazeri, F.</au><au>Fakhraie, S.M.</au><au>Ahmadabadi, M.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling</atitle><btitle>2006 IEEE International Conference on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2006</date><risdate>2006</risdate><spage>340</spage><epage>347</epage><pages>340-347</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>9780780394872</isbn><isbn>0780394879</isbn><abstract>A multiprocessor scheduling problem is defined as the assignment of a given set of tasks to a set of processors. These tasks should be assigned in a way such that the total execution time is minimized and certain criteria are met. A wide range of solutions and heuristics have been proposed to solve this important system optimization problem. In this paper, we propose a novel representation to solve the task scheduling problem using genetic algorithm (GA). This representation is novel not only in the way it presents task scheduling, but also in that the length of that representation is intelligently adaptable to the given problem. Task duplication is allowed in our method and it is capable of spanning a large proportion of the solution space without the need for penalty/rewards or adding repair mechanisms whilst always generating valid chromosomes. Due to this new representation, order of the search space has been reduced; consequently, the proposed approach outperforms some recently studied GA based scheduling methods over 120 times with respect to the number of fitness evaluations.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2006.1688328</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2006 IEEE International Conference on Evolutionary Computation, 2006, p.340-347 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_1688328 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological cells Clustering algorithms Cost function Genetic algorithms Optimal scheduling Parallel processing Processor scheduling Scheduling algorithm Time factors Timing |
title | A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Representation%20for%20Genetic-Algorithm-Based%20Multiprocessor%20Task%20Scheduling&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Evolutionary%20Computation&rft.au=Jelodar,%20M.S.&rft.date=2006&rft.spage=340&rft.epage=347&rft.pages=340-347&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=9780780394872&rft.isbn_list=0780394879&rft_id=info:doi/10.1109/CEC.2006.1688328&rft_dat=%3Cieee_6IE%3E1688328%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1688328&rfr_iscdi=true |