A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling

A multiprocessor scheduling problem is defined as the assignment of a given set of tasks to a set of processors. These tasks should be assigned in a way such that the total execution time is minimized and certain criteria are met. A wide range of solutions and heuristics have been proposed to solve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jelodar, M.S., Fakhraie, S.N., Montazeri, F., Fakhraie, S.M., Ahmadabadi, M.N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue
container_start_page 340
container_title
container_volume
creator Jelodar, M.S.
Fakhraie, S.N.
Montazeri, F.
Fakhraie, S.M.
Ahmadabadi, M.N.
description A multiprocessor scheduling problem is defined as the assignment of a given set of tasks to a set of processors. These tasks should be assigned in a way such that the total execution time is minimized and certain criteria are met. A wide range of solutions and heuristics have been proposed to solve this important system optimization problem. In this paper, we propose a novel representation to solve the task scheduling problem using genetic algorithm (GA). This representation is novel not only in the way it presents task scheduling, but also in that the length of that representation is intelligently adaptable to the given problem. Task duplication is allowed in our method and it is capable of spanning a large proportion of the solution space without the need for penalty/rewards or adding repair mechanisms whilst always generating valid chromosomes. Due to this new representation, order of the search space has been reduced; consequently, the proposed approach outperforms some recently studied GA based scheduling methods over 120 times with respect to the number of fitness evaluations.
doi_str_mv 10.1109/CEC.2006.1688328
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1688328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1688328</ieee_id><sourcerecordid>1688328</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-49ddc7ecc008ca4c352577cc99232675c01db8b0b72d25eb77a37d4493f98a723</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQcfYK3dC27yBybeeSR3ZllDrWJF0AruymTmth1Nk5JJF_57CxYOnMV3-BaHsVsBuRBg76tZlUuAMhelMUqaMzYSVgsOIMtzNrFo4BhltUF5cWRgLEc0X1fsOqVvAKELYUfsZZq9076nRO3ghti12brrszm1NETPp82m6-Ow3fEHlyhkr4dmiPu-85TScbZ06Sf78FsKhya2mxt2uXZNosmpx-zzcbasnvjibf5cTRc8CiwGrm0IHsl7AOOd9qqQBaL31kolSyw8iFCbGmqUQRZUIzqFQWur1tY4lGrM7v69kYhW-z7uXP-7Ov2g_gCsmE9M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jelodar, M.S. ; Fakhraie, S.N. ; Montazeri, F. ; Fakhraie, S.M. ; Ahmadabadi, M.N.</creator><creatorcontrib>Jelodar, M.S. ; Fakhraie, S.N. ; Montazeri, F. ; Fakhraie, S.M. ; Ahmadabadi, M.N.</creatorcontrib><description>A multiprocessor scheduling problem is defined as the assignment of a given set of tasks to a set of processors. These tasks should be assigned in a way such that the total execution time is minimized and certain criteria are met. A wide range of solutions and heuristics have been proposed to solve this important system optimization problem. In this paper, we propose a novel representation to solve the task scheduling problem using genetic algorithm (GA). This representation is novel not only in the way it presents task scheduling, but also in that the length of that representation is intelligently adaptable to the given problem. Task duplication is allowed in our method and it is capable of spanning a large proportion of the solution space without the need for penalty/rewards or adding repair mechanisms whilst always generating valid chromosomes. Due to this new representation, order of the search space has been reduced; consequently, the proposed approach outperforms some recently studied GA based scheduling methods over 120 times with respect to the number of fitness evaluations.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 9780780394872</identifier><identifier>ISBN: 0780394879</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/CEC.2006.1688328</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Clustering algorithms ; Cost function ; Genetic algorithms ; Optimal scheduling ; Parallel processing ; Processor scheduling ; Scheduling algorithm ; Time factors ; Timing</subject><ispartof>2006 IEEE International Conference on Evolutionary Computation, 2006, p.340-347</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1688328$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2051,4035,4036,27904,54737,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1688328$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jelodar, M.S.</creatorcontrib><creatorcontrib>Fakhraie, S.N.</creatorcontrib><creatorcontrib>Montazeri, F.</creatorcontrib><creatorcontrib>Fakhraie, S.M.</creatorcontrib><creatorcontrib>Ahmadabadi, M.N.</creatorcontrib><title>A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling</title><title>2006 IEEE International Conference on Evolutionary Computation</title><addtitle>CEC</addtitle><description>A multiprocessor scheduling problem is defined as the assignment of a given set of tasks to a set of processors. These tasks should be assigned in a way such that the total execution time is minimized and certain criteria are met. A wide range of solutions and heuristics have been proposed to solve this important system optimization problem. In this paper, we propose a novel representation to solve the task scheduling problem using genetic algorithm (GA). This representation is novel not only in the way it presents task scheduling, but also in that the length of that representation is intelligently adaptable to the given problem. Task duplication is allowed in our method and it is capable of spanning a large proportion of the solution space without the need for penalty/rewards or adding repair mechanisms whilst always generating valid chromosomes. Due to this new representation, order of the search space has been reduced; consequently, the proposed approach outperforms some recently studied GA based scheduling methods over 120 times with respect to the number of fitness evaluations.</description><subject>Biological cells</subject><subject>Clustering algorithms</subject><subject>Cost function</subject><subject>Genetic algorithms</subject><subject>Optimal scheduling</subject><subject>Parallel processing</subject><subject>Processor scheduling</subject><subject>Scheduling algorithm</subject><subject>Time factors</subject><subject>Timing</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>9780780394872</isbn><isbn>0780394879</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLw0AUhQcfYK3dC27yBybeeSR3ZllDrWJF0AruymTmth1Nk5JJF_57CxYOnMV3-BaHsVsBuRBg76tZlUuAMhelMUqaMzYSVgsOIMtzNrFo4BhltUF5cWRgLEc0X1fsOqVvAKELYUfsZZq9076nRO3ghti12brrszm1NETPp82m6-Ow3fEHlyhkr4dmiPu-85TScbZ06Sf78FsKhya2mxt2uXZNosmpx-zzcbasnvjibf5cTRc8CiwGrm0IHsl7AOOd9qqQBaL31kolSyw8iFCbGmqUQRZUIzqFQWur1tY4lGrM7v69kYhW-z7uXP-7Ov2g_gCsmE9M</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Jelodar, M.S.</creator><creator>Fakhraie, S.N.</creator><creator>Montazeri, F.</creator><creator>Fakhraie, S.M.</creator><creator>Ahmadabadi, M.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling</title><author>Jelodar, M.S. ; Fakhraie, S.N. ; Montazeri, F. ; Fakhraie, S.M. ; Ahmadabadi, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-49ddc7ecc008ca4c352577cc99232675c01db8b0b72d25eb77a37d4493f98a723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological cells</topic><topic>Clustering algorithms</topic><topic>Cost function</topic><topic>Genetic algorithms</topic><topic>Optimal scheduling</topic><topic>Parallel processing</topic><topic>Processor scheduling</topic><topic>Scheduling algorithm</topic><topic>Time factors</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jelodar, M.S.</creatorcontrib><creatorcontrib>Fakhraie, S.N.</creatorcontrib><creatorcontrib>Montazeri, F.</creatorcontrib><creatorcontrib>Fakhraie, S.M.</creatorcontrib><creatorcontrib>Ahmadabadi, M.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jelodar, M.S.</au><au>Fakhraie, S.N.</au><au>Montazeri, F.</au><au>Fakhraie, S.M.</au><au>Ahmadabadi, M.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling</atitle><btitle>2006 IEEE International Conference on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2006</date><risdate>2006</risdate><spage>340</spage><epage>347</epage><pages>340-347</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>9780780394872</isbn><isbn>0780394879</isbn><abstract>A multiprocessor scheduling problem is defined as the assignment of a given set of tasks to a set of processors. These tasks should be assigned in a way such that the total execution time is minimized and certain criteria are met. A wide range of solutions and heuristics have been proposed to solve this important system optimization problem. In this paper, we propose a novel representation to solve the task scheduling problem using genetic algorithm (GA). This representation is novel not only in the way it presents task scheduling, but also in that the length of that representation is intelligently adaptable to the given problem. Task duplication is allowed in our method and it is capable of spanning a large proportion of the solution space without the need for penalty/rewards or adding repair mechanisms whilst always generating valid chromosomes. Due to this new representation, order of the search space has been reduced; consequently, the proposed approach outperforms some recently studied GA based scheduling methods over 120 times with respect to the number of fitness evaluations.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2006.1688328</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2006 IEEE International Conference on Evolutionary Computation, 2006, p.340-347
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_1688328
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Clustering algorithms
Cost function
Genetic algorithms
Optimal scheduling
Parallel processing
Processor scheduling
Scheduling algorithm
Time factors
Timing
title A Representation for Genetic-Algorithm-Based Multiprocessor Task Scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Representation%20for%20Genetic-Algorithm-Based%20Multiprocessor%20Task%20Scheduling&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Evolutionary%20Computation&rft.au=Jelodar,%20M.S.&rft.date=2006&rft.spage=340&rft.epage=347&rft.pages=340-347&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=9780780394872&rft.isbn_list=0780394879&rft_id=info:doi/10.1109/CEC.2006.1688328&rft_dat=%3Cieee_6IE%3E1688328%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1688328&rfr_iscdi=true