Suboptimal Maximum Likelihood Detection Using Gradient-based Algorithm for MIMO Channels
This paper proposes a suboptimal maximum likelihood detection (MLD) algorithm for multiple-input multiple-output (MIMO) communications. The proposed algorithm regards transmitted signals as continuous variables in the same way as a common method for the discrete optimization problem, and then search...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2542 |
---|---|
container_issue | |
container_start_page | 2538 |
container_title | |
container_volume | 5 |
creator | Thet Htun Khine Fukawa, K. Suzuki, H. |
description | This paper proposes a suboptimal maximum likelihood detection (MLD) algorithm for multiple-input multiple-output (MIMO) communications. The proposed algorithm regards transmitted signals as continuous variables in the same way as a common method for the discrete optimization problem, and then searches candidates of the transmitted signals in the direction of a modified gradient vector of the metric. The vector enhances components in the gradient that are likely to cause the noise enhancement from which the zero-forcing (ZF) or minimum mean square error (MMSE) algorithms suffer. This method sets the initial guess to the solution by the ZF or MMSE algorithms, which can be recursively calculated. Also, the proposed algorithm requires the same complexity order as that of the ZF algorithm. Computer simulations demonstrate that it is superior in BER performance to conventional suboptimal algorithms of which complexity order is equal to that of ZF |
doi_str_mv | 10.1109/VETECS.2006.1683315 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1683315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1683315</ieee_id><sourcerecordid>1683315</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cb91a7e2149b31bf7cf71313b0ff06dfe3eac358d6a064eb72383feb894be7f33</originalsourceid><addsrcrecordid>eNotkM1OwkAURseoiYA8AZt5geLcuW2nsyQVkYSGBWDckZn2Dh3tD2lLom8viaxOzuYk38fYDMQcQOiXj-V-me7mUoh4DnGCCNEdGwuVCNSopb5nU32Vm4N8YCOIIhFIGcknNu77LyFCJVCO2OfuYtvz4GtT8cz8-PpS843_psqXbVvwVxooH3zb8EPvmxNfdabw1AyBNT0VfFGd2s4PZc1d2_FsnW15Wpqmoap_Zo_OVD1Nb5yww9tyn74Hm-1qnS42gQcVDUFuNRhFEkJtEaxTuVOAgFY4J-LCEZLJMUqK2Ig4JKskJujIJjq0pBzihM3-u56IjufuuqT7Pd5ewT-rHlVo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Suboptimal Maximum Likelihood Detection Using Gradient-based Algorithm for MIMO Channels</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Thet Htun Khine ; Fukawa, K. ; Suzuki, H.</creator><creatorcontrib>Thet Htun Khine ; Fukawa, K. ; Suzuki, H.</creatorcontrib><description>This paper proposes a suboptimal maximum likelihood detection (MLD) algorithm for multiple-input multiple-output (MIMO) communications. The proposed algorithm regards transmitted signals as continuous variables in the same way as a common method for the discrete optimization problem, and then searches candidates of the transmitted signals in the direction of a modified gradient vector of the metric. The vector enhances components in the gradient that are likely to cause the noise enhancement from which the zero-forcing (ZF) or minimum mean square error (MMSE) algorithms suffer. This method sets the initial guess to the solution by the ZF or MMSE algorithms, which can be recursively calculated. Also, the proposed algorithm requires the same complexity order as that of the ZF algorithm. Computer simulations demonstrate that it is superior in BER performance to conventional suboptimal algorithms of which complexity order is equal to that of ZF</description><identifier>ISSN: 1550-2252</identifier><identifier>ISBN: 9780780393912</identifier><identifier>ISBN: 0780393910</identifier><identifier>EISBN: 0780393929</identifier><identifier>EISBN: 9780780393929</identifier><identifier>DOI: 10.1109/VETECS.2006.1683315</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit error rate ; Eigenvalues and eigenfunctions ; Fading ; Maximum likelihood detection ; Mean square error methods ; MIMO ; Optimization methods ; Receiving antennas ; Signal detection ; Signal to noise ratio</subject><ispartof>2006 IEEE 63rd Vehicular Technology Conference, 2006, Vol.5, p.2538-2542</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1683315$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1683315$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thet Htun Khine</creatorcontrib><creatorcontrib>Fukawa, K.</creatorcontrib><creatorcontrib>Suzuki, H.</creatorcontrib><title>Suboptimal Maximum Likelihood Detection Using Gradient-based Algorithm for MIMO Channels</title><title>2006 IEEE 63rd Vehicular Technology Conference</title><addtitle>VETECS</addtitle><description>This paper proposes a suboptimal maximum likelihood detection (MLD) algorithm for multiple-input multiple-output (MIMO) communications. The proposed algorithm regards transmitted signals as continuous variables in the same way as a common method for the discrete optimization problem, and then searches candidates of the transmitted signals in the direction of a modified gradient vector of the metric. The vector enhances components in the gradient that are likely to cause the noise enhancement from which the zero-forcing (ZF) or minimum mean square error (MMSE) algorithms suffer. This method sets the initial guess to the solution by the ZF or MMSE algorithms, which can be recursively calculated. Also, the proposed algorithm requires the same complexity order as that of the ZF algorithm. Computer simulations demonstrate that it is superior in BER performance to conventional suboptimal algorithms of which complexity order is equal to that of ZF</description><subject>Bit error rate</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Fading</subject><subject>Maximum likelihood detection</subject><subject>Mean square error methods</subject><subject>MIMO</subject><subject>Optimization methods</subject><subject>Receiving antennas</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><issn>1550-2252</issn><isbn>9780780393912</isbn><isbn>0780393910</isbn><isbn>0780393929</isbn><isbn>9780780393929</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1OwkAURseoiYA8AZt5geLcuW2nsyQVkYSGBWDckZn2Dh3tD2lLom8viaxOzuYk38fYDMQcQOiXj-V-me7mUoh4DnGCCNEdGwuVCNSopb5nU32Vm4N8YCOIIhFIGcknNu77LyFCJVCO2OfuYtvz4GtT8cz8-PpS843_psqXbVvwVxooH3zb8EPvmxNfdabw1AyBNT0VfFGd2s4PZc1d2_FsnW15Wpqmoap_Zo_OVD1Nb5yww9tyn74Hm-1qnS42gQcVDUFuNRhFEkJtEaxTuVOAgFY4J-LCEZLJMUqK2Ig4JKskJujIJjq0pBzihM3-u56IjufuuqT7Pd5ewT-rHlVo</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Thet Htun Khine</creator><creator>Fukawa, K.</creator><creator>Suzuki, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Suboptimal Maximum Likelihood Detection Using Gradient-based Algorithm for MIMO Channels</title><author>Thet Htun Khine ; Fukawa, K. ; Suzuki, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cb91a7e2149b31bf7cf71313b0ff06dfe3eac358d6a064eb72383feb894be7f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bit error rate</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Fading</topic><topic>Maximum likelihood detection</topic><topic>Mean square error methods</topic><topic>MIMO</topic><topic>Optimization methods</topic><topic>Receiving antennas</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Thet Htun Khine</creatorcontrib><creatorcontrib>Fukawa, K.</creatorcontrib><creatorcontrib>Suzuki, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thet Htun Khine</au><au>Fukawa, K.</au><au>Suzuki, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Suboptimal Maximum Likelihood Detection Using Gradient-based Algorithm for MIMO Channels</atitle><btitle>2006 IEEE 63rd Vehicular Technology Conference</btitle><stitle>VETECS</stitle><date>2006</date><risdate>2006</risdate><volume>5</volume><spage>2538</spage><epage>2542</epage><pages>2538-2542</pages><issn>1550-2252</issn><isbn>9780780393912</isbn><isbn>0780393910</isbn><eisbn>0780393929</eisbn><eisbn>9780780393929</eisbn><abstract>This paper proposes a suboptimal maximum likelihood detection (MLD) algorithm for multiple-input multiple-output (MIMO) communications. The proposed algorithm regards transmitted signals as continuous variables in the same way as a common method for the discrete optimization problem, and then searches candidates of the transmitted signals in the direction of a modified gradient vector of the metric. The vector enhances components in the gradient that are likely to cause the noise enhancement from which the zero-forcing (ZF) or minimum mean square error (MMSE) algorithms suffer. This method sets the initial guess to the solution by the ZF or MMSE algorithms, which can be recursively calculated. Also, the proposed algorithm requires the same complexity order as that of the ZF algorithm. Computer simulations demonstrate that it is superior in BER performance to conventional suboptimal algorithms of which complexity order is equal to that of ZF</abstract><pub>IEEE</pub><doi>10.1109/VETECS.2006.1683315</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-2252 |
ispartof | 2006 IEEE 63rd Vehicular Technology Conference, 2006, Vol.5, p.2538-2542 |
issn | 1550-2252 |
language | eng |
recordid | cdi_ieee_primary_1683315 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bit error rate Eigenvalues and eigenfunctions Fading Maximum likelihood detection Mean square error methods MIMO Optimization methods Receiving antennas Signal detection Signal to noise ratio |
title | Suboptimal Maximum Likelihood Detection Using Gradient-based Algorithm for MIMO Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Suboptimal%20Maximum%20Likelihood%20Detection%20Using%20Gradient-based%20Algorithm%20for%20MIMO%20Channels&rft.btitle=2006%20IEEE%2063rd%20Vehicular%20Technology%20Conference&rft.au=Thet%20Htun%20Khine&rft.date=2006&rft.volume=5&rft.spage=2538&rft.epage=2542&rft.pages=2538-2542&rft.issn=1550-2252&rft.isbn=9780780393912&rft.isbn_list=0780393910&rft_id=info:doi/10.1109/VETECS.2006.1683315&rft_dat=%3Cieee_6IE%3E1683315%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0780393929&rft.eisbn_list=9780780393929&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1683315&rfr_iscdi=true |