Analytical and experimental investigation on the magnetic field and torque of a permanent magnet spherical actuator
This paper presents the torque model of a ball-joint-like three-degree-of-freedom (3-DOF) permanent magnet (PM) spherical actuator. This actuator features a ball-shaped rotor with multiple PM poles and a spherical stator with circumferential air-core coils. An analytical expression of the magnetic f...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2006-08, Vol.11 (4), p.409-419 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | 4 |
container_start_page | 409 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 11 |
creator | Liang Yan, Liang Yan I-Ming Chen, I-Ming Chen Guilin Yang, Guilin Yang Kok-Meng Lee, Kok-Meng Lee |
description | This paper presents the torque model of a ball-joint-like three-degree-of-freedom (3-DOF) permanent magnet (PM) spherical actuator. This actuator features a ball-shaped rotor with multiple PM poles and a spherical stator with circumferential air-core coils. An analytical expression of the magnetic field of the rotor is obtained based on Laplace's equation. Based on this expression and properties of air-core stator coils, Lorentz force law is employed for the study of the relationship between the rotor torque and coil input currents. By using linear superposition, the expression of the actuator torque in terms of current input to the stator coils can be obtained in a matrix form. The linear expression of the actuator torque will facilitate real-time motion control of the actuator as a servo system. Experimental works are carried out to measure the actual magnetic field distribution of the PM rotor in three-dimensional (3-D) space as well as to measure the actual 3-D motor torque generated by the actuator coils. The measurement results were coincident with analytical study on the rotor magnetic field distribution and actuator torque expressions. The linearity and superposition of the actuator torque were also verified through the experiments |
doi_str_mv | 10.1109/TMECH.2006.878545 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1677572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1677572</ieee_id><sourcerecordid>1671231338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e22cd6b9450e1652262cd5280daad992ea95abe06c858b6fa4f5202760a97fc93</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoWKs_QNwEV26mJpkkM1mWUq2guKngLqQzd9op83KSEfvvvX2AIASSG75zONxDyC1nE86ZeVy-zWeLiWBMT9IkVVKdkRE3kkeMy89zfLM0jqSM1SW58n7LGJOc8RHx08ZVu1BmrqKuySn8dNCXNTQBP8rmG3wo1y6UbUPxhA3Q2q0bQAEtSqjygyi0_dcAtC2ooyivXYP6E0h9t0HHg38WBofsNbkoXOXh5nSPycfTfDlbRK_vzy-z6WuUxYaHCITIcr0yUjHgWgmhcVYiZblzuTECnFFuBUxnqUpXunCyUIKJRDNnkiIz8Zg8HH27vsV8Pti69BlUFeZrB2-5TriIeRyniN7_Q7ft0ONqvE21SjgGkgjxI5T1rfc9FLbDVbl-Zzmz-xbsoQW7b8EeW0DN3VFTAsAfr5NEJSL-BXiRhPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865713914</pqid></control><display><type>article</type><title>Analytical and experimental investigation on the magnetic field and torque of a permanent magnet spherical actuator</title><source>IEEE Electronic Library (IEL)</source><creator>Liang Yan, Liang Yan ; I-Ming Chen, I-Ming Chen ; Guilin Yang, Guilin Yang ; Kok-Meng Lee, Kok-Meng Lee</creator><creatorcontrib>Liang Yan, Liang Yan ; I-Ming Chen, I-Ming Chen ; Guilin Yang, Guilin Yang ; Kok-Meng Lee, Kok-Meng Lee</creatorcontrib><description>This paper presents the torque model of a ball-joint-like three-degree-of-freedom (3-DOF) permanent magnet (PM) spherical actuator. This actuator features a ball-shaped rotor with multiple PM poles and a spherical stator with circumferential air-core coils. An analytical expression of the magnetic field of the rotor is obtained based on Laplace's equation. Based on this expression and properties of air-core stator coils, Lorentz force law is employed for the study of the relationship between the rotor torque and coil input currents. By using linear superposition, the expression of the actuator torque in terms of current input to the stator coils can be obtained in a matrix form. The linear expression of the actuator torque will facilitate real-time motion control of the actuator as a servo system. Experimental works are carried out to measure the actual magnetic field distribution of the PM rotor in three-dimensional (3-D) space as well as to measure the actual 3-D motor torque generated by the actuator coils. The measurement results were coincident with analytical study on the rotor magnetic field distribution and actuator torque expressions. The linearity and superposition of the actuator torque were also verified through the experiments</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2006.878545</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Coils ; Electromagnetism ; Finite element analysis ; Hydraulic actuators ; Laplace equations ; Magnetic analysis ; Magnetic field ; Magnetic field measurement ; Magnetic fields ; Mathematical analysis ; Permanent magnets ; Rotors ; spherical actuator ; Stators ; Studies ; Torque ; Torque measurement ; torque model</subject><ispartof>IEEE/ASME transactions on mechatronics, 2006-08, Vol.11 (4), p.409-419</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e22cd6b9450e1652262cd5280daad992ea95abe06c858b6fa4f5202760a97fc93</citedby><cites>FETCH-LOGICAL-c391t-e22cd6b9450e1652262cd5280daad992ea95abe06c858b6fa4f5202760a97fc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1677572$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1677572$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Yan, Liang Yan</creatorcontrib><creatorcontrib>I-Ming Chen, I-Ming Chen</creatorcontrib><creatorcontrib>Guilin Yang, Guilin Yang</creatorcontrib><creatorcontrib>Kok-Meng Lee, Kok-Meng Lee</creatorcontrib><title>Analytical and experimental investigation on the magnetic field and torque of a permanent magnet spherical actuator</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This paper presents the torque model of a ball-joint-like three-degree-of-freedom (3-DOF) permanent magnet (PM) spherical actuator. This actuator features a ball-shaped rotor with multiple PM poles and a spherical stator with circumferential air-core coils. An analytical expression of the magnetic field of the rotor is obtained based on Laplace's equation. Based on this expression and properties of air-core stator coils, Lorentz force law is employed for the study of the relationship between the rotor torque and coil input currents. By using linear superposition, the expression of the actuator torque in terms of current input to the stator coils can be obtained in a matrix form. The linear expression of the actuator torque will facilitate real-time motion control of the actuator as a servo system. Experimental works are carried out to measure the actual magnetic field distribution of the PM rotor in three-dimensional (3-D) space as well as to measure the actual 3-D motor torque generated by the actuator coils. The measurement results were coincident with analytical study on the rotor magnetic field distribution and actuator torque expressions. The linearity and superposition of the actuator torque were also verified through the experiments</description><subject>Actuators</subject><subject>Coils</subject><subject>Electromagnetism</subject><subject>Finite element analysis</subject><subject>Hydraulic actuators</subject><subject>Laplace equations</subject><subject>Magnetic analysis</subject><subject>Magnetic field</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Permanent magnets</subject><subject>Rotors</subject><subject>spherical actuator</subject><subject>Stators</subject><subject>Studies</subject><subject>Torque</subject><subject>Torque measurement</subject><subject>torque model</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtLAzEUhYMoWKs_QNwEV26mJpkkM1mWUq2guKngLqQzd9op83KSEfvvvX2AIASSG75zONxDyC1nE86ZeVy-zWeLiWBMT9IkVVKdkRE3kkeMy89zfLM0jqSM1SW58n7LGJOc8RHx08ZVu1BmrqKuySn8dNCXNTQBP8rmG3wo1y6UbUPxhA3Q2q0bQAEtSqjygyi0_dcAtC2ooyivXYP6E0h9t0HHg38WBofsNbkoXOXh5nSPycfTfDlbRK_vzy-z6WuUxYaHCITIcr0yUjHgWgmhcVYiZblzuTECnFFuBUxnqUpXunCyUIKJRDNnkiIz8Zg8HH27vsV8Pti69BlUFeZrB2-5TriIeRyniN7_Q7ft0ONqvE21SjgGkgjxI5T1rfc9FLbDVbl-Zzmz-xbsoQW7b8EeW0DN3VFTAsAfr5NEJSL-BXiRhPU</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Liang Yan, Liang Yan</creator><creator>I-Ming Chen, I-Ming Chen</creator><creator>Guilin Yang, Guilin Yang</creator><creator>Kok-Meng Lee, Kok-Meng Lee</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20060801</creationdate><title>Analytical and experimental investigation on the magnetic field and torque of a permanent magnet spherical actuator</title><author>Liang Yan, Liang Yan ; I-Ming Chen, I-Ming Chen ; Guilin Yang, Guilin Yang ; Kok-Meng Lee, Kok-Meng Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e22cd6b9450e1652262cd5280daad992ea95abe06c858b6fa4f5202760a97fc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actuators</topic><topic>Coils</topic><topic>Electromagnetism</topic><topic>Finite element analysis</topic><topic>Hydraulic actuators</topic><topic>Laplace equations</topic><topic>Magnetic analysis</topic><topic>Magnetic field</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Permanent magnets</topic><topic>Rotors</topic><topic>spherical actuator</topic><topic>Stators</topic><topic>Studies</topic><topic>Torque</topic><topic>Torque measurement</topic><topic>torque model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang Yan, Liang Yan</creatorcontrib><creatorcontrib>I-Ming Chen, I-Ming Chen</creatorcontrib><creatorcontrib>Guilin Yang, Guilin Yang</creatorcontrib><creatorcontrib>Kok-Meng Lee, Kok-Meng Lee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Yan, Liang Yan</au><au>I-Ming Chen, I-Ming Chen</au><au>Guilin Yang, Guilin Yang</au><au>Kok-Meng Lee, Kok-Meng Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical and experimental investigation on the magnetic field and torque of a permanent magnet spherical actuator</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>11</volume><issue>4</issue><spage>409</spage><epage>419</epage><pages>409-419</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This paper presents the torque model of a ball-joint-like three-degree-of-freedom (3-DOF) permanent magnet (PM) spherical actuator. This actuator features a ball-shaped rotor with multiple PM poles and a spherical stator with circumferential air-core coils. An analytical expression of the magnetic field of the rotor is obtained based on Laplace's equation. Based on this expression and properties of air-core stator coils, Lorentz force law is employed for the study of the relationship between the rotor torque and coil input currents. By using linear superposition, the expression of the actuator torque in terms of current input to the stator coils can be obtained in a matrix form. The linear expression of the actuator torque will facilitate real-time motion control of the actuator as a servo system. Experimental works are carried out to measure the actual magnetic field distribution of the PM rotor in three-dimensional (3-D) space as well as to measure the actual 3-D motor torque generated by the actuator coils. The measurement results were coincident with analytical study on the rotor magnetic field distribution and actuator torque expressions. The linearity and superposition of the actuator torque were also verified through the experiments</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2006.878545</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2006-08, Vol.11 (4), p.409-419 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_ieee_primary_1677572 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Coils Electromagnetism Finite element analysis Hydraulic actuators Laplace equations Magnetic analysis Magnetic field Magnetic field measurement Magnetic fields Mathematical analysis Permanent magnets Rotors spherical actuator Stators Studies Torque Torque measurement torque model |
title | Analytical and experimental investigation on the magnetic field and torque of a permanent magnet spherical actuator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20and%20experimental%20investigation%20on%20the%20magnetic%20field%20and%20torque%20of%20a%20permanent%20magnet%20spherical%20actuator&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Liang%20Yan,%20Liang%20Yan&rft.date=2006-08-01&rft.volume=11&rft.issue=4&rft.spage=409&rft.epage=419&rft.pages=409-419&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2006.878545&rft_dat=%3Cproquest_RIE%3E1671231338%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865713914&rft_id=info:pmid/&rft_ieee_id=1677572&rfr_iscdi=true |