Group Properties of Cellular Automata and VLSI Applications

The study of one-dimensional cellular automata exhibiting group properties is presented. The results show that only a certain class of cellular automata rules exhibit group characteristics based on rule multiplication. However, many other of these automata reveal groups based on permutations of thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1986-12, Vol.C-35 (12), p.1013-1024
Hauptverfasser: Pries, Thanailakis, Card
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1024
container_issue 12
container_start_page 1013
container_title IEEE transactions on computers
container_volume C-35
creator Pries
Thanailakis
Card
description The study of one-dimensional cellular automata exhibiting group properties is presented. The results show that only a certain class of cellular automata rules exhibit group characteristics based on rule multiplication. However, many other of these automata reveal groups based on permutations of their global states. It is further shown how these groups may be utilized in the design of modulo arithmetic units. The communication properties of cellular automata are observed to map favorably to optimal communication graphs for VLSI layouts. They exploit the implementation medium and properly address the physical limits on computational structures. Comparisons of cellular automata-based modulo arithmetic units with other VLSI algorithms are presented using area-time complexity measures.
doi_str_mv 10.1109/TC.1986.1676709
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1676709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1676709</ieee_id><sourcerecordid>10_1109_TC_1986_1676709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1df2104c63bc9e4c5a41f369caca27b58da7e6c4dd7adc0c007b910a57a40f153</originalsourceid><addsrcrecordid>eNpFj0FLhEAYhocoyLbOHbrMH9D9PnVmHDqJ1LYgFGRd5XMcwXBXmdFD_76WFfb0Ht73eeFh7BEhQgS9rYoIdSYjlEoq0FcsQCFUqLWQ1ywAwCzUSQq37M77HwCQMeiAPe_cuEz8w42TdXNvPR87XthhWAZyPF_m8UAzcTq2_Lv83PN8mobe0NyPR3_PbjoavH1Yc8O-Xl-q4i0s33f7Ii9Dk8RiDrHtYoTUyKQx2qZGUIpdIrUhQ7FqRNaSstKkbauoNWAAVKMRSChKoUORbNj2_Gvc6L2zXT25_kDut0aoT-51VdQn93p1_yeezkRvrb2s1_YP_YpVGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Group Properties of Cellular Automata and VLSI Applications</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Pries ; Thanailakis ; Card</creator><creatorcontrib>Pries ; Thanailakis ; Card</creatorcontrib><description>The study of one-dimensional cellular automata exhibiting group properties is presented. The results show that only a certain class of cellular automata rules exhibit group characteristics based on rule multiplication. However, many other of these automata reveal groups based on permutations of their global states. It is further shown how these groups may be utilized in the design of modulo arithmetic units. The communication properties of cellular automata are observed to map favorably to optimal communication graphs for VLSI layouts. They exploit the implementation medium and properly address the physical limits on computational structures. Comparisons of cellular automata-based modulo arithmetic units with other VLSI algorithms are presented using area-time complexity measures.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.1986.1676709</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automata theory ; cellular automata ; computation ; group theory ; mesh connected computers ; modular arithmetic ; VLSI</subject><ispartof>IEEE transactions on computers, 1986-12, Vol.C-35 (12), p.1013-1024</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1df2104c63bc9e4c5a41f369caca27b58da7e6c4dd7adc0c007b910a57a40f153</citedby><cites>FETCH-LOGICAL-c325t-1df2104c63bc9e4c5a41f369caca27b58da7e6c4dd7adc0c007b910a57a40f153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1676709$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1676709$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pries</creatorcontrib><creatorcontrib>Thanailakis</creatorcontrib><creatorcontrib>Card</creatorcontrib><title>Group Properties of Cellular Automata and VLSI Applications</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>The study of one-dimensional cellular automata exhibiting group properties is presented. The results show that only a certain class of cellular automata rules exhibit group characteristics based on rule multiplication. However, many other of these automata reveal groups based on permutations of their global states. It is further shown how these groups may be utilized in the design of modulo arithmetic units. The communication properties of cellular automata are observed to map favorably to optimal communication graphs for VLSI layouts. They exploit the implementation medium and properly address the physical limits on computational structures. Comparisons of cellular automata-based modulo arithmetic units with other VLSI algorithms are presented using area-time complexity measures.</description><subject>Automata theory</subject><subject>cellular automata</subject><subject>computation</subject><subject>group theory</subject><subject>mesh connected computers</subject><subject>modular arithmetic</subject><subject>VLSI</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNpFj0FLhEAYhocoyLbOHbrMH9D9PnVmHDqJ1LYgFGRd5XMcwXBXmdFD_76WFfb0Ht73eeFh7BEhQgS9rYoIdSYjlEoq0FcsQCFUqLWQ1ywAwCzUSQq37M77HwCQMeiAPe_cuEz8w42TdXNvPR87XthhWAZyPF_m8UAzcTq2_Lv83PN8mobe0NyPR3_PbjoavH1Yc8O-Xl-q4i0s33f7Ii9Dk8RiDrHtYoTUyKQx2qZGUIpdIrUhQ7FqRNaSstKkbauoNWAAVKMRSChKoUORbNj2_Gvc6L2zXT25_kDut0aoT-51VdQn93p1_yeezkRvrb2s1_YP_YpVGw</recordid><startdate>19861201</startdate><enddate>19861201</enddate><creator>Pries</creator><creator>Thanailakis</creator><creator>Card</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19861201</creationdate><title>Group Properties of Cellular Automata and VLSI Applications</title><author>Pries ; Thanailakis ; Card</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1df2104c63bc9e4c5a41f369caca27b58da7e6c4dd7adc0c007b910a57a40f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Automata theory</topic><topic>cellular automata</topic><topic>computation</topic><topic>group theory</topic><topic>mesh connected computers</topic><topic>modular arithmetic</topic><topic>VLSI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pries</creatorcontrib><creatorcontrib>Thanailakis</creatorcontrib><creatorcontrib>Card</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pries</au><au>Thanailakis</au><au>Card</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group Properties of Cellular Automata and VLSI Applications</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>1986-12-01</date><risdate>1986</risdate><volume>C-35</volume><issue>12</issue><spage>1013</spage><epage>1024</epage><pages>1013-1024</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>The study of one-dimensional cellular automata exhibiting group properties is presented. The results show that only a certain class of cellular automata rules exhibit group characteristics based on rule multiplication. However, many other of these automata reveal groups based on permutations of their global states. It is further shown how these groups may be utilized in the design of modulo arithmetic units. The communication properties of cellular automata are observed to map favorably to optimal communication graphs for VLSI layouts. They exploit the implementation medium and properly address the physical limits on computational structures. Comparisons of cellular automata-based modulo arithmetic units with other VLSI algorithms are presented using area-time complexity measures.</abstract><pub>IEEE</pub><doi>10.1109/TC.1986.1676709</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 1986-12, Vol.C-35 (12), p.1013-1024
issn 0018-9340
1557-9956
language eng
recordid cdi_ieee_primary_1676709
source IEEE/IET Electronic Library (IEL)
subjects Automata theory
cellular automata
computation
group theory
mesh connected computers
modular arithmetic
VLSI
title Group Properties of Cellular Automata and VLSI Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20Properties%20of%20Cellular%20Automata%20and%20VLSI%20Applications&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Pries&rft.date=1986-12-01&rft.volume=C-35&rft.issue=12&rft.spage=1013&rft.epage=1024&rft.pages=1013-1024&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.1986.1676709&rft_dat=%3Ccrossref_RIE%3E10_1109_TC_1986_1676709%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1676709&rfr_iscdi=true