Computer Optimization of Recognition Networks

This paper discusses optimization and implementation of recognition networks using interconnections of a standard network element to form a classification network. The standard element has a nonlinear transfer function whose inputs may be weighted by selected resistors. It is assumed that a training...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1969-10, Vol.C-18 (10), p.918-923
1. Verfasser: Drucker, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 923
container_issue 10
container_start_page 918
container_title IEEE transactions on computers
container_volume C-18
creator Drucker, H.
description This paper discusses optimization and implementation of recognition networks using interconnections of a standard network element to form a classification network. The standard element has a nonlinear transfer function whose inputs may be weighted by selected resistors. It is assumed that a training set of samples to be accepted or rejected is available but neither the a priori probabilities or the probability density functions of the measurements that describe the samples are known. The discriminant functions are formed from a given topology with unknown sets of weighting resistors assigned to the elements that constitute the classification network. Computer optimization is done using a hill-climbing technique that maximizes a function related to the miss rate and false alarm rate but requires neither an estimate or exact description of the sample probability space. A particular advantage is the one-to-one correspondence between the results of the optimization program and physical realization of the optimal recognition network. Disadvantages are due to the fact that an optimum can be found only with respect to a given topology and that the optimization algorithm may prematurely terminate on a local maximum.
doi_str_mv 10.1109/T-C.1969.222547
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1671140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1671140</ieee_id><sourcerecordid>10_1109_T_C_1969_222547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-a910f99cd0927c227117458e28669ab5bbe95c61a10f976258cdfc74d90dab1d3</originalsourceid><addsrcrecordid>eNpFj0tLxDAUhYMoWEfXLtz0D6RzkzZJ71KKLxgckLoOaZpK1E5KUhH99U4dwdXhwHnwEXLJoGAMcN3SpmAoseCci0odkYwJoSiikMckA2A1xbKCU3KW0isASA6YEdqEcfqYXcy30-xH_21mH3Z5GPInZ8PLzv_aRzd_hviWzsnJYN6Tu_jTFXm-vWmbe7rZ3j001xtqucCZGmQwINoekCvLuWJMVaJ2vJYSTSe6zqGwkpklpiQXte0Hq6oeoTcd68sVWR92bQwpRTfoKfrRxC_NQC-0utWNXmj1gXbfuDo0vHPuPy331xWUP9fhUCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computer Optimization of Recognition Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Drucker, H.</creator><creatorcontrib>Drucker, H.</creatorcontrib><description>This paper discusses optimization and implementation of recognition networks using interconnections of a standard network element to form a classification network. The standard element has a nonlinear transfer function whose inputs may be weighted by selected resistors. It is assumed that a training set of samples to be accepted or rejected is available but neither the a priori probabilities or the probability density functions of the measurements that describe the samples are known. The discriminant functions are formed from a given topology with unknown sets of weighting resistors assigned to the elements that constitute the classification network. Computer optimization is done using a hill-climbing technique that maximizes a function related to the miss rate and false alarm rate but requires neither an estimate or exact description of the sample probability space. A particular advantage is the one-to-one correspondence between the results of the optimization program and physical realization of the optimal recognition network. Disadvantages are due to the fact that an optimum can be found only with respect to a given topology and that the optimization algorithm may prematurely terminate on a local maximum.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/T-C.1969.222547</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discriminant functions ; false alarm rate ; hill-climbing techniques ; learning machines ; miss rate ; optimization ; pattern recognition</subject><ispartof>IEEE transactions on computers, 1969-10, Vol.C-18 (10), p.918-923</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-a910f99cd0927c227117458e28669ab5bbe95c61a10f976258cdfc74d90dab1d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1671140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1671140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Drucker, H.</creatorcontrib><title>Computer Optimization of Recognition Networks</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>This paper discusses optimization and implementation of recognition networks using interconnections of a standard network element to form a classification network. The standard element has a nonlinear transfer function whose inputs may be weighted by selected resistors. It is assumed that a training set of samples to be accepted or rejected is available but neither the a priori probabilities or the probability density functions of the measurements that describe the samples are known. The discriminant functions are formed from a given topology with unknown sets of weighting resistors assigned to the elements that constitute the classification network. Computer optimization is done using a hill-climbing technique that maximizes a function related to the miss rate and false alarm rate but requires neither an estimate or exact description of the sample probability space. A particular advantage is the one-to-one correspondence between the results of the optimization program and physical realization of the optimal recognition network. Disadvantages are due to the fact that an optimum can be found only with respect to a given topology and that the optimization algorithm may prematurely terminate on a local maximum.</description><subject>Discriminant functions</subject><subject>false alarm rate</subject><subject>hill-climbing techniques</subject><subject>learning machines</subject><subject>miss rate</subject><subject>optimization</subject><subject>pattern recognition</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1969</creationdate><recordtype>article</recordtype><recordid>eNpFj0tLxDAUhYMoWEfXLtz0D6RzkzZJ71KKLxgckLoOaZpK1E5KUhH99U4dwdXhwHnwEXLJoGAMcN3SpmAoseCci0odkYwJoSiikMckA2A1xbKCU3KW0isASA6YEdqEcfqYXcy30-xH_21mH3Z5GPInZ8PLzv_aRzd_hviWzsnJYN6Tu_jTFXm-vWmbe7rZ3j001xtqucCZGmQwINoekCvLuWJMVaJ2vJYSTSe6zqGwkpklpiQXte0Hq6oeoTcd68sVWR92bQwpRTfoKfrRxC_NQC-0utWNXmj1gXbfuDo0vHPuPy331xWUP9fhUCU</recordid><startdate>196910</startdate><enddate>196910</enddate><creator>Drucker, H.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196910</creationdate><title>Computer Optimization of Recognition Networks</title><author>Drucker, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-a910f99cd0927c227117458e28669ab5bbe95c61a10f976258cdfc74d90dab1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1969</creationdate><topic>Discriminant functions</topic><topic>false alarm rate</topic><topic>hill-climbing techniques</topic><topic>learning machines</topic><topic>miss rate</topic><topic>optimization</topic><topic>pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drucker, H.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Drucker, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Optimization of Recognition Networks</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>1969-10</date><risdate>1969</risdate><volume>C-18</volume><issue>10</issue><spage>918</spage><epage>923</epage><pages>918-923</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>This paper discusses optimization and implementation of recognition networks using interconnections of a standard network element to form a classification network. The standard element has a nonlinear transfer function whose inputs may be weighted by selected resistors. It is assumed that a training set of samples to be accepted or rejected is available but neither the a priori probabilities or the probability density functions of the measurements that describe the samples are known. The discriminant functions are formed from a given topology with unknown sets of weighting resistors assigned to the elements that constitute the classification network. Computer optimization is done using a hill-climbing technique that maximizes a function related to the miss rate and false alarm rate but requires neither an estimate or exact description of the sample probability space. A particular advantage is the one-to-one correspondence between the results of the optimization program and physical realization of the optimal recognition network. Disadvantages are due to the fact that an optimum can be found only with respect to a given topology and that the optimization algorithm may prematurely terminate on a local maximum.</abstract><pub>IEEE</pub><doi>10.1109/T-C.1969.222547</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 1969-10, Vol.C-18 (10), p.918-923
issn 0018-9340
1557-9956
language eng
recordid cdi_ieee_primary_1671140
source IEEE Electronic Library (IEL)
subjects Discriminant functions
false alarm rate
hill-climbing techniques
learning machines
miss rate
optimization
pattern recognition
title Computer Optimization of Recognition Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Optimization%20of%20Recognition%20Networks&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Drucker,%20H.&rft.date=1969-10&rft.volume=C-18&rft.issue=10&rft.spage=918&rft.epage=923&rft.pages=918-923&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/T-C.1969.222547&rft_dat=%3Ccrossref_RIE%3E10_1109_T_C_1969_222547%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1671140&rfr_iscdi=true