Miniature broadband bandpass filters using double-layer coupled stripline resonators

A novel double-layer coupled stripline resonator structure is introduced to realize miniature broadband bandpass filters. Filters with relative bandwidth up to 60% and size less than lambda/8timeslambda/8timesh (lambda is wavelength at the midband frequency; h is the substrate height, which is much...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2006-08, Vol.54 (8), p.3370-3377
Hauptverfasser: Yunchi Zhang, Zaki, K.A., Piloto, A.J., Tallo, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3377
container_issue 8
container_start_page 3370
container_title IEEE transactions on microwave theory and techniques
container_volume 54
creator Yunchi Zhang
Zaki, K.A.
Piloto, A.J.
Tallo, J.
description A novel double-layer coupled stripline resonator structure is introduced to realize miniature broadband bandpass filters. Filters with relative bandwidth up to 60% and size less than lambda/8timeslambda/8timesh (lambda is wavelength at the midband frequency; h is the substrate height, which is much smaller than lambda/8) can be fulfilled using such resonators. Two possible filter configurations are proposed in this paper: combline and interdigital. The filter synthesis procedure follows the classical coupling matrix approach that generates very good initial responses. Optimization by the mode-matching method and fine tuning in Ansoft's High Frequency Structure Simulator are combined to improve the filter performance. Two filter design examples are given to validate the feasibility. Low temperature co-fired ceramic (LTCC) technology is employed to manufacture the filters. Experimental results of the two manufactured filters are presented. The effects of LTCC manufacturing procedure on the filter performance are also discussed
doi_str_mv 10.1109/TMTT.2006.879176
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1668355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1668355</ieee_id><sourcerecordid>2341425461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-31e5c748aa363f3de71ba1c4b813e80cb96529756b15317662ffe8cd0bb7a68b3</originalsourceid><addsrcrecordid>eNpdkM9r3TAMgM1oYa8_7oNewqDslDc7jh3lOErXDVp2Sc_GdpTh4saplRz639ePVyj0IiH0SUgfY98E3wvB-5_DwzDsG871HrpedPoL2wmlurrXHT9hO84F1H0L_Cs7I3oqZas47NjwEOZg1y1j5XKyo7PzWB3CYomqKcQVM1Ubhfl_NabNRayjfcVc-bQtEceK1hyWGGasMlKa7ZoyXbDTyUbCy_d8zh5_3w43f-r7f3d_b37d174VsNZSoPJdC9ZKLSc5YiecFb51ICQC967Xquk7pZ1Qsrykm2lC8CN3rrManDxnP457l5xeNqTVPAfyGKOdMW1kAHoJXKqmkN8_kU9py3M5zoBWbVPM9AXiR8jnRJRxMksOzza_GsHNQbI5SDYHyeYouYxcv--15G2csp19oI854E05AAp3deQCIn60tQaplHwD3raGKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865429489</pqid></control><display><type>article</type><title>Miniature broadband bandpass filters using double-layer coupled stripline resonators</title><source>IEEE Electronic Library (IEL)</source><creator>Yunchi Zhang ; Zaki, K.A. ; Piloto, A.J. ; Tallo, J.</creator><creatorcontrib>Yunchi Zhang ; Zaki, K.A. ; Piloto, A.J. ; Tallo, J.</creatorcontrib><description>A novel double-layer coupled stripline resonator structure is introduced to realize miniature broadband bandpass filters. Filters with relative bandwidth up to 60% and size less than lambda/8timeslambda/8timesh (lambda is wavelength at the midband frequency; h is the substrate height, which is much smaller than lambda/8) can be fulfilled using such resonators. Two possible filter configurations are proposed in this paper: combline and interdigital. The filter synthesis procedure follows the classical coupling matrix approach that generates very good initial responses. Optimization by the mode-matching method and fine tuning in Ansoft's High Frequency Structure Simulator are combined to improve the filter performance. Two filter design examples are given to validate the feasibility. Low temperature co-fired ceramic (LTCC) technology is employed to manufacture the filters. Experimental results of the two manufactured filters are presented. The effects of LTCC manufacturing procedure on the filter performance are also discussed</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2006.879176</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Band pass filters ; Bandpass filter ; Bandpass filters ; Bandwidth ; Broadband ; Ceramics ; Circuit properties ; combline ; compact ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Frequency ; Frequency filters ; interdigital ; low-temperature co-fired ceramic (LTCC) ; Manufacturing ; Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits ; Microwaves ; Miniature ; Mode matching methods ; Optimization methods ; Oscillators, resonators, synthetizers ; resonator ; Resonator filters ; Resonators ; Stripline ; Striplines ; Transmission line matrix methods ; Tuning</subject><ispartof>IEEE transactions on microwave theory and techniques, 2006-08, Vol.54 (8), p.3370-3377</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-31e5c748aa363f3de71ba1c4b813e80cb96529756b15317662ffe8cd0bb7a68b3</citedby><cites>FETCH-LOGICAL-c418t-31e5c748aa363f3de71ba1c4b813e80cb96529756b15317662ffe8cd0bb7a68b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1668355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1668355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18028038$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yunchi Zhang</creatorcontrib><creatorcontrib>Zaki, K.A.</creatorcontrib><creatorcontrib>Piloto, A.J.</creatorcontrib><creatorcontrib>Tallo, J.</creatorcontrib><title>Miniature broadband bandpass filters using double-layer coupled stripline resonators</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>A novel double-layer coupled stripline resonator structure is introduced to realize miniature broadband bandpass filters. Filters with relative bandwidth up to 60% and size less than lambda/8timeslambda/8timesh (lambda is wavelength at the midband frequency; h is the substrate height, which is much smaller than lambda/8) can be fulfilled using such resonators. Two possible filter configurations are proposed in this paper: combline and interdigital. The filter synthesis procedure follows the classical coupling matrix approach that generates very good initial responses. Optimization by the mode-matching method and fine tuning in Ansoft's High Frequency Structure Simulator are combined to improve the filter performance. Two filter design examples are given to validate the feasibility. Low temperature co-fired ceramic (LTCC) technology is employed to manufacture the filters. Experimental results of the two manufactured filters are presented. The effects of LTCC manufacturing procedure on the filter performance are also discussed</description><subject>Applied sciences</subject><subject>Band pass filters</subject><subject>Bandpass filter</subject><subject>Bandpass filters</subject><subject>Bandwidth</subject><subject>Broadband</subject><subject>Ceramics</subject><subject>Circuit properties</subject><subject>combline</subject><subject>compact</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Frequency filters</subject><subject>interdigital</subject><subject>low-temperature co-fired ceramic (LTCC)</subject><subject>Manufacturing</subject><subject>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</subject><subject>Microwaves</subject><subject>Miniature</subject><subject>Mode matching methods</subject><subject>Optimization methods</subject><subject>Oscillators, resonators, synthetizers</subject><subject>resonator</subject><subject>Resonator filters</subject><subject>Resonators</subject><subject>Stripline</subject><subject>Striplines</subject><subject>Transmission line matrix methods</subject><subject>Tuning</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9r3TAMgM1oYa8_7oNewqDslDc7jh3lOErXDVp2Sc_GdpTh4saplRz639ePVyj0IiH0SUgfY98E3wvB-5_DwzDsG871HrpedPoL2wmlurrXHT9hO84F1H0L_Cs7I3oqZas47NjwEOZg1y1j5XKyo7PzWB3CYomqKcQVM1Ubhfl_NabNRayjfcVc-bQtEceK1hyWGGasMlKa7ZoyXbDTyUbCy_d8zh5_3w43f-r7f3d_b37d174VsNZSoPJdC9ZKLSc5YiecFb51ICQC967Xquk7pZ1Qsrykm2lC8CN3rrManDxnP457l5xeNqTVPAfyGKOdMW1kAHoJXKqmkN8_kU9py3M5zoBWbVPM9AXiR8jnRJRxMksOzza_GsHNQbI5SDYHyeYouYxcv--15G2csp19oI854E05AAp3deQCIn60tQaplHwD3raGKQ</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Yunchi Zhang</creator><creator>Zaki, K.A.</creator><creator>Piloto, A.J.</creator><creator>Tallo, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20060801</creationdate><title>Miniature broadband bandpass filters using double-layer coupled stripline resonators</title><author>Yunchi Zhang ; Zaki, K.A. ; Piloto, A.J. ; Tallo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-31e5c748aa363f3de71ba1c4b813e80cb96529756b15317662ffe8cd0bb7a68b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Band pass filters</topic><topic>Bandpass filter</topic><topic>Bandpass filters</topic><topic>Bandwidth</topic><topic>Broadband</topic><topic>Ceramics</topic><topic>Circuit properties</topic><topic>combline</topic><topic>compact</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Frequency filters</topic><topic>interdigital</topic><topic>low-temperature co-fired ceramic (LTCC)</topic><topic>Manufacturing</topic><topic>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</topic><topic>Microwaves</topic><topic>Miniature</topic><topic>Mode matching methods</topic><topic>Optimization methods</topic><topic>Oscillators, resonators, synthetizers</topic><topic>resonator</topic><topic>Resonator filters</topic><topic>Resonators</topic><topic>Stripline</topic><topic>Striplines</topic><topic>Transmission line matrix methods</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yunchi Zhang</creatorcontrib><creatorcontrib>Zaki, K.A.</creatorcontrib><creatorcontrib>Piloto, A.J.</creatorcontrib><creatorcontrib>Tallo, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yunchi Zhang</au><au>Zaki, K.A.</au><au>Piloto, A.J.</au><au>Tallo, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniature broadband bandpass filters using double-layer coupled stripline resonators</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>54</volume><issue>8</issue><spage>3370</spage><epage>3377</epage><pages>3370-3377</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>A novel double-layer coupled stripline resonator structure is introduced to realize miniature broadband bandpass filters. Filters with relative bandwidth up to 60% and size less than lambda/8timeslambda/8timesh (lambda is wavelength at the midband frequency; h is the substrate height, which is much smaller than lambda/8) can be fulfilled using such resonators. Two possible filter configurations are proposed in this paper: combline and interdigital. The filter synthesis procedure follows the classical coupling matrix approach that generates very good initial responses. Optimization by the mode-matching method and fine tuning in Ansoft's High Frequency Structure Simulator are combined to improve the filter performance. Two filter design examples are given to validate the feasibility. Low temperature co-fired ceramic (LTCC) technology is employed to manufacture the filters. Experimental results of the two manufactured filters are presented. The effects of LTCC manufacturing procedure on the filter performance are also discussed</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2006.879176</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2006-08, Vol.54 (8), p.3370-3377
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_1668355
source IEEE Electronic Library (IEL)
subjects Applied sciences
Band pass filters
Bandpass filter
Bandpass filters
Bandwidth
Broadband
Ceramics
Circuit properties
combline
compact
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Frequency
Frequency filters
interdigital
low-temperature co-fired ceramic (LTCC)
Manufacturing
Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits
Microwaves
Miniature
Mode matching methods
Optimization methods
Oscillators, resonators, synthetizers
resonator
Resonator filters
Resonators
Stripline
Striplines
Transmission line matrix methods
Tuning
title Miniature broadband bandpass filters using double-layer coupled stripline resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniature%20broadband%20bandpass%20filters%20using%20double-layer%20coupled%20stripline%20resonators&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Yunchi%20Zhang&rft.date=2006-08-01&rft.volume=54&rft.issue=8&rft.spage=3370&rft.epage=3377&rft.pages=3370-3377&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2006.879176&rft_dat=%3Cproquest_RIE%3E2341425461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865429489&rft_id=info:pmid/&rft_ieee_id=1668355&rfr_iscdi=true