Sensorless Sensing in Wireless Networks: Implementation and Measurements
Multipath fading and shadowing are usually regarded as negative phenomena hindering proper radio communication. Adopting a completely different stance, this paper illustrates that such phenomena enable information harvesting from received signal strength leading to a number of original applications...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Woyach, K. Puccinelli, D. Haenggi, M. |
description | Multipath fading and shadowing are usually regarded as negative phenomena hindering proper radio communication. Adopting a completely different stance, this paper illustrates that such phenomena enable information harvesting from received signal strength leading to a number of original applications requiring no conventional sensing hardware. The radio itself, provided that it can measure the strength of the incoming signal, is the only sensor we use; with this sensor-less sensing approach, any wireless network becomes a sensor network. We show that motion of the nodes in the network or motion of bodies external to the network leaves a characteristic footprint on signal strength patterns, which may be exploited for motion detection. We illustrate a technique to extract an estimate of velocity from signal strength, and we leverage on the spatial memory properties of wireless links to present a method for spatial configuration recognition. |
doi_str_mv | 10.1109/WIOPT.2006.1666495 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1666495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1666495</ieee_id><sourcerecordid>1666495</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1345-3258e8c15ebbcdeda81ef431e7c7538d4be27c655c634c3948fb6814cc01d7ab3</originalsourceid><addsrcrecordid>eNotj81KAzEcxAMiqG1fQC95gV2Tzed6k6J2obaClR5LPv4r0d1sSVbEt9fWzmVmfoeBQeiakpJSUt9um_XLpqwIkSWVUvJanKErojRhteB1dYFmOX-QPx264pdo8QoxD6mDnPEhhviOQ8TbkODIVjB-D-kz3-Gm33fQQxzNGIaITfT4GUz-SkeYp-i8NV2G2ckn6O3xYTNfFMv1UzO_XxaBMi4KVgkN2lEB1joP3mgKLWcUlFOCac8tVMpJIZxk3LGa69ZKTblzhHplLJugm__dAAC7fQq9ST-701n2C4VMS_8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sensorless Sensing in Wireless Networks: Implementation and Measurements</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Woyach, K. ; Puccinelli, D. ; Haenggi, M.</creator><creatorcontrib>Woyach, K. ; Puccinelli, D. ; Haenggi, M.</creatorcontrib><description>Multipath fading and shadowing are usually regarded as negative phenomena hindering proper radio communication. Adopting a completely different stance, this paper illustrates that such phenomena enable information harvesting from received signal strength leading to a number of original applications requiring no conventional sensing hardware. The radio itself, provided that it can measure the strength of the incoming signal, is the only sensor we use; with this sensor-less sensing approach, any wireless network becomes a sensor network. We show that motion of the nodes in the network or motion of bodies external to the network leaves a characteristic footprint on signal strength patterns, which may be exploited for motion detection. We illustrate a technique to extract an estimate of velocity from signal strength, and we leverage on the spatial memory properties of wireless links to present a method for spatial configuration recognition.</description><identifier>ISBN: 0780395492</identifier><identifier>ISBN: 9780780395497</identifier><identifier>DOI: 10.1109/WIOPT.2006.1666495</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Electric variables measurement ; Fading ; Hardware ; Intelligent networks ; Motion detection ; Object detection ; Sensor phenomena and characterization ; Shadow mapping ; Wireless sensor networks</subject><ispartof>2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1666495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1666495$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Woyach, K.</creatorcontrib><creatorcontrib>Puccinelli, D.</creatorcontrib><creatorcontrib>Haenggi, M.</creatorcontrib><title>Sensorless Sensing in Wireless Networks: Implementation and Measurements</title><title>2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks</title><addtitle>WIOPT</addtitle><description>Multipath fading and shadowing are usually regarded as negative phenomena hindering proper radio communication. Adopting a completely different stance, this paper illustrates that such phenomena enable information harvesting from received signal strength leading to a number of original applications requiring no conventional sensing hardware. The radio itself, provided that it can measure the strength of the incoming signal, is the only sensor we use; with this sensor-less sensing approach, any wireless network becomes a sensor network. We show that motion of the nodes in the network or motion of bodies external to the network leaves a characteristic footprint on signal strength patterns, which may be exploited for motion detection. We illustrate a technique to extract an estimate of velocity from signal strength, and we leverage on the spatial memory properties of wireless links to present a method for spatial configuration recognition.</description><subject>Data mining</subject><subject>Electric variables measurement</subject><subject>Fading</subject><subject>Hardware</subject><subject>Intelligent networks</subject><subject>Motion detection</subject><subject>Object detection</subject><subject>Sensor phenomena and characterization</subject><subject>Shadow mapping</subject><subject>Wireless sensor networks</subject><isbn>0780395492</isbn><isbn>9780780395497</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KAzEcxAMiqG1fQC95gV2Tzed6k6J2obaClR5LPv4r0d1sSVbEt9fWzmVmfoeBQeiakpJSUt9um_XLpqwIkSWVUvJanKErojRhteB1dYFmOX-QPx264pdo8QoxD6mDnPEhhviOQ8TbkODIVjB-D-kz3-Gm33fQQxzNGIaITfT4GUz-SkeYp-i8NV2G2ckn6O3xYTNfFMv1UzO_XxaBMi4KVgkN2lEB1joP3mgKLWcUlFOCac8tVMpJIZxk3LGa69ZKTblzhHplLJugm__dAAC7fQq9ST-701n2C4VMS_8</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Woyach, K.</creator><creator>Puccinelli, D.</creator><creator>Haenggi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Sensorless Sensing in Wireless Networks: Implementation and Measurements</title><author>Woyach, K. ; Puccinelli, D. ; Haenggi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1345-3258e8c15ebbcdeda81ef431e7c7538d4be27c655c634c3948fb6814cc01d7ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Data mining</topic><topic>Electric variables measurement</topic><topic>Fading</topic><topic>Hardware</topic><topic>Intelligent networks</topic><topic>Motion detection</topic><topic>Object detection</topic><topic>Sensor phenomena and characterization</topic><topic>Shadow mapping</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Woyach, K.</creatorcontrib><creatorcontrib>Puccinelli, D.</creatorcontrib><creatorcontrib>Haenggi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Woyach, K.</au><au>Puccinelli, D.</au><au>Haenggi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sensorless Sensing in Wireless Networks: Implementation and Measurements</atitle><btitle>2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks</btitle><stitle>WIOPT</stitle><date>2006</date><risdate>2006</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>0780395492</isbn><isbn>9780780395497</isbn><abstract>Multipath fading and shadowing are usually regarded as negative phenomena hindering proper radio communication. Adopting a completely different stance, this paper illustrates that such phenomena enable information harvesting from received signal strength leading to a number of original applications requiring no conventional sensing hardware. The radio itself, provided that it can measure the strength of the incoming signal, is the only sensor we use; with this sensor-less sensing approach, any wireless network becomes a sensor network. We show that motion of the nodes in the network or motion of bodies external to the network leaves a characteristic footprint on signal strength patterns, which may be exploited for motion detection. We illustrate a technique to extract an estimate of velocity from signal strength, and we leverage on the spatial memory properties of wireless links to present a method for spatial configuration recognition.</abstract><pub>IEEE</pub><doi>10.1109/WIOPT.2006.1666495</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780395492 |
ispartof | 2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006, p.1-8 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1666495 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining Electric variables measurement Fading Hardware Intelligent networks Motion detection Object detection Sensor phenomena and characterization Shadow mapping Wireless sensor networks |
title | Sensorless Sensing in Wireless Networks: Implementation and Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sensorless%20Sensing%20in%20Wireless%20Networks:%20Implementation%20and%20Measurements&rft.btitle=2006%204th%20International%20Symposium%20on%20Modeling%20and%20Optimization%20in%20Mobile,%20Ad%20Hoc%20and%20Wireless%20Networks&rft.au=Woyach,%20K.&rft.date=2006&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=0780395492&rft.isbn_list=9780780395497&rft_id=info:doi/10.1109/WIOPT.2006.1666495&rft_dat=%3Cieee_6IE%3E1666495%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1666495&rfr_iscdi=true |