Sensorless Sensing in Wireless Networks: Implementation and Measurements

Multipath fading and shadowing are usually regarded as negative phenomena hindering proper radio communication. Adopting a completely different stance, this paper illustrates that such phenomena enable information harvesting from received signal strength leading to a number of original applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Woyach, K., Puccinelli, D., Haenggi, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Woyach, K.
Puccinelli, D.
Haenggi, M.
description Multipath fading and shadowing are usually regarded as negative phenomena hindering proper radio communication. Adopting a completely different stance, this paper illustrates that such phenomena enable information harvesting from received signal strength leading to a number of original applications requiring no conventional sensing hardware. The radio itself, provided that it can measure the strength of the incoming signal, is the only sensor we use; with this sensor-less sensing approach, any wireless network becomes a sensor network. We show that motion of the nodes in the network or motion of bodies external to the network leaves a characteristic footprint on signal strength patterns, which may be exploited for motion detection. We illustrate a technique to extract an estimate of velocity from signal strength, and we leverage on the spatial memory properties of wireless links to present a method for spatial configuration recognition.
doi_str_mv 10.1109/WIOPT.2006.1666495
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1666495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1666495</ieee_id><sourcerecordid>1666495</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1345-3258e8c15ebbcdeda81ef431e7c7538d4be27c655c634c3948fb6814cc01d7ab3</originalsourceid><addsrcrecordid>eNotj81KAzEcxAMiqG1fQC95gV2Tzed6k6J2obaClR5LPv4r0d1sSVbEt9fWzmVmfoeBQeiakpJSUt9um_XLpqwIkSWVUvJanKErojRhteB1dYFmOX-QPx264pdo8QoxD6mDnPEhhviOQ8TbkODIVjB-D-kz3-Gm33fQQxzNGIaITfT4GUz-SkeYp-i8NV2G2ckn6O3xYTNfFMv1UzO_XxaBMi4KVgkN2lEB1joP3mgKLWcUlFOCac8tVMpJIZxk3LGa69ZKTblzhHplLJugm__dAAC7fQq9ST-701n2C4VMS_8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sensorless Sensing in Wireless Networks: Implementation and Measurements</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Woyach, K. ; Puccinelli, D. ; Haenggi, M.</creator><creatorcontrib>Woyach, K. ; Puccinelli, D. ; Haenggi, M.</creatorcontrib><description>Multipath fading and shadowing are usually regarded as negative phenomena hindering proper radio communication. Adopting a completely different stance, this paper illustrates that such phenomena enable information harvesting from received signal strength leading to a number of original applications requiring no conventional sensing hardware. The radio itself, provided that it can measure the strength of the incoming signal, is the only sensor we use; with this sensor-less sensing approach, any wireless network becomes a sensor network. We show that motion of the nodes in the network or motion of bodies external to the network leaves a characteristic footprint on signal strength patterns, which may be exploited for motion detection. We illustrate a technique to extract an estimate of velocity from signal strength, and we leverage on the spatial memory properties of wireless links to present a method for spatial configuration recognition.</description><identifier>ISBN: 0780395492</identifier><identifier>ISBN: 9780780395497</identifier><identifier>DOI: 10.1109/WIOPT.2006.1666495</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Electric variables measurement ; Fading ; Hardware ; Intelligent networks ; Motion detection ; Object detection ; Sensor phenomena and characterization ; Shadow mapping ; Wireless sensor networks</subject><ispartof>2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1666495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1666495$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Woyach, K.</creatorcontrib><creatorcontrib>Puccinelli, D.</creatorcontrib><creatorcontrib>Haenggi, M.</creatorcontrib><title>Sensorless Sensing in Wireless Networks: Implementation and Measurements</title><title>2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks</title><addtitle>WIOPT</addtitle><description>Multipath fading and shadowing are usually regarded as negative phenomena hindering proper radio communication. Adopting a completely different stance, this paper illustrates that such phenomena enable information harvesting from received signal strength leading to a number of original applications requiring no conventional sensing hardware. The radio itself, provided that it can measure the strength of the incoming signal, is the only sensor we use; with this sensor-less sensing approach, any wireless network becomes a sensor network. We show that motion of the nodes in the network or motion of bodies external to the network leaves a characteristic footprint on signal strength patterns, which may be exploited for motion detection. We illustrate a technique to extract an estimate of velocity from signal strength, and we leverage on the spatial memory properties of wireless links to present a method for spatial configuration recognition.</description><subject>Data mining</subject><subject>Electric variables measurement</subject><subject>Fading</subject><subject>Hardware</subject><subject>Intelligent networks</subject><subject>Motion detection</subject><subject>Object detection</subject><subject>Sensor phenomena and characterization</subject><subject>Shadow mapping</subject><subject>Wireless sensor networks</subject><isbn>0780395492</isbn><isbn>9780780395497</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KAzEcxAMiqG1fQC95gV2Tzed6k6J2obaClR5LPv4r0d1sSVbEt9fWzmVmfoeBQeiakpJSUt9um_XLpqwIkSWVUvJanKErojRhteB1dYFmOX-QPx264pdo8QoxD6mDnPEhhviOQ8TbkODIVjB-D-kz3-Gm33fQQxzNGIaITfT4GUz-SkeYp-i8NV2G2ckn6O3xYTNfFMv1UzO_XxaBMi4KVgkN2lEB1joP3mgKLWcUlFOCac8tVMpJIZxk3LGa69ZKTblzhHplLJugm__dAAC7fQq9ST-701n2C4VMS_8</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Woyach, K.</creator><creator>Puccinelli, D.</creator><creator>Haenggi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Sensorless Sensing in Wireless Networks: Implementation and Measurements</title><author>Woyach, K. ; Puccinelli, D. ; Haenggi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1345-3258e8c15ebbcdeda81ef431e7c7538d4be27c655c634c3948fb6814cc01d7ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Data mining</topic><topic>Electric variables measurement</topic><topic>Fading</topic><topic>Hardware</topic><topic>Intelligent networks</topic><topic>Motion detection</topic><topic>Object detection</topic><topic>Sensor phenomena and characterization</topic><topic>Shadow mapping</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Woyach, K.</creatorcontrib><creatorcontrib>Puccinelli, D.</creatorcontrib><creatorcontrib>Haenggi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Woyach, K.</au><au>Puccinelli, D.</au><au>Haenggi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sensorless Sensing in Wireless Networks: Implementation and Measurements</atitle><btitle>2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks</btitle><stitle>WIOPT</stitle><date>2006</date><risdate>2006</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>0780395492</isbn><isbn>9780780395497</isbn><abstract>Multipath fading and shadowing are usually regarded as negative phenomena hindering proper radio communication. Adopting a completely different stance, this paper illustrates that such phenomena enable information harvesting from received signal strength leading to a number of original applications requiring no conventional sensing hardware. The radio itself, provided that it can measure the strength of the incoming signal, is the only sensor we use; with this sensor-less sensing approach, any wireless network becomes a sensor network. We show that motion of the nodes in the network or motion of bodies external to the network leaves a characteristic footprint on signal strength patterns, which may be exploited for motion detection. We illustrate a technique to extract an estimate of velocity from signal strength, and we leverage on the spatial memory properties of wireless links to present a method for spatial configuration recognition.</abstract><pub>IEEE</pub><doi>10.1109/WIOPT.2006.1666495</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780395492
ispartof 2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006, p.1-8
issn
language eng
recordid cdi_ieee_primary_1666495
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Electric variables measurement
Fading
Hardware
Intelligent networks
Motion detection
Object detection
Sensor phenomena and characterization
Shadow mapping
Wireless sensor networks
title Sensorless Sensing in Wireless Networks: Implementation and Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sensorless%20Sensing%20in%20Wireless%20Networks:%20Implementation%20and%20Measurements&rft.btitle=2006%204th%20International%20Symposium%20on%20Modeling%20and%20Optimization%20in%20Mobile,%20Ad%20Hoc%20and%20Wireless%20Networks&rft.au=Woyach,%20K.&rft.date=2006&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=0780395492&rft.isbn_list=9780780395497&rft_id=info:doi/10.1109/WIOPT.2006.1666495&rft_dat=%3Cieee_6IE%3E1666495%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1666495&rfr_iscdi=true