Evolving Random Geometric Graph Models for Mobile Wireless Networks

We consider evolving exponential RGGs in one dimension and characterize the time dependent behavior of some of their topological properties. We consider two evolution models and study one of them detail while providing a summary of the results for the other. In the first model, the inter-nodal gaps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karamchandani, N., Manjunath, D., Yogeshwaran, D., Iyer, S.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Karamchandani, N.
Manjunath, D.
Yogeshwaran, D.
Iyer, S.K.
description We consider evolving exponential RGGs in one dimension and characterize the time dependent behavior of some of their topological properties. We consider two evolution models and study one of them detail while providing a summary of the results for the other. In the first model, the inter-nodal gaps evolve according to an exponential AR(1) process that makes the stationary distribution of the node locations exponential. For this model we obtain the one-step conditional connectivity probabilities and extend it to the k-step case. Finite and asymptotic analysis are given. We then obtain the k-step connectivity probability conditioned on the network being disconnected. We also derive the pmf of the first passage time for a connected network to become disconnected. We then describe a random birth-death model where at each instant, the node locations evolve according to an AR(1) process. In addition, a random node is allowed to die while giving birth to a node at another location. We derive properties similar to those above.
doi_str_mv 10.1109/WIOPT.2006.1666441
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1666441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1666441</ieee_id><sourcerecordid>1666441</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d1f89d90e28f38b11393004d7e485281ce8f6ebf1d38ca920835962ecbf54313</originalsourceid><addsrcrecordid>eNotj11LwzAYhQMiqNv-gN7kD7S--WiaXEqZdTDd0MEuR9u80Wi7jKRM_PdO3Lk5z7l54BByyyBnDMz9drFab3IOoHKmlJKSXZAbKDUIU0jDr8gspU845W-X8ppU82Poj37_Tl-bvQ0DrTEMOEbf0To2hw_6HCz2iboQT9j6HunWR-wxJfqC43eIX2lKLl3TJ5yde0LeHueb6ilbrupF9bDMvIExs8xpYw0g107oljFhBIC0JUpdcM061E5h65gVumsMBy0Kozh2rSukYGJC7v6tHhF3h-iHJv7szi_FL4BDSAI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolving Random Geometric Graph Models for Mobile Wireless Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karamchandani, N. ; Manjunath, D. ; Yogeshwaran, D. ; Iyer, S.K.</creator><creatorcontrib>Karamchandani, N. ; Manjunath, D. ; Yogeshwaran, D. ; Iyer, S.K.</creatorcontrib><description>We consider evolving exponential RGGs in one dimension and characterize the time dependent behavior of some of their topological properties. We consider two evolution models and study one of them detail while providing a summary of the results for the other. In the first model, the inter-nodal gaps evolve according to an exponential AR(1) process that makes the stationary distribution of the node locations exponential. For this model we obtain the one-step conditional connectivity probabilities and extend it to the k-step case. Finite and asymptotic analysis are given. We then obtain the k-step connectivity probability conditioned on the network being disconnected. We also derive the pmf of the first passage time for a connected network to become disconnected. We then describe a random birth-death model where at each instant, the node locations evolve according to an AR(1) process. In addition, a random node is allowed to die while giving birth to a node at another location. We derive properties similar to those above.</description><identifier>ISBN: 0780395492</identifier><identifier>ISBN: 9780780395497</identifier><identifier>DOI: 10.1109/WIOPT.2006.1666441</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ad hoc networks ; Context modeling ; Mathematics ; Mobile ad hoc networks ; Probability distribution ; Solid modeling ; Stochastic processes ; Throughput ; Wireless networks ; Wireless sensor networks</subject><ispartof>2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1666441$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1666441$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karamchandani, N.</creatorcontrib><creatorcontrib>Manjunath, D.</creatorcontrib><creatorcontrib>Yogeshwaran, D.</creatorcontrib><creatorcontrib>Iyer, S.K.</creatorcontrib><title>Evolving Random Geometric Graph Models for Mobile Wireless Networks</title><title>2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks</title><addtitle>WIOPT</addtitle><description>We consider evolving exponential RGGs in one dimension and characterize the time dependent behavior of some of their topological properties. We consider two evolution models and study one of them detail while providing a summary of the results for the other. In the first model, the inter-nodal gaps evolve according to an exponential AR(1) process that makes the stationary distribution of the node locations exponential. For this model we obtain the one-step conditional connectivity probabilities and extend it to the k-step case. Finite and asymptotic analysis are given. We then obtain the k-step connectivity probability conditioned on the network being disconnected. We also derive the pmf of the first passage time for a connected network to become disconnected. We then describe a random birth-death model where at each instant, the node locations evolve according to an AR(1) process. In addition, a random node is allowed to die while giving birth to a node at another location. We derive properties similar to those above.</description><subject>Ad hoc networks</subject><subject>Context modeling</subject><subject>Mathematics</subject><subject>Mobile ad hoc networks</subject><subject>Probability distribution</subject><subject>Solid modeling</subject><subject>Stochastic processes</subject><subject>Throughput</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><isbn>0780395492</isbn><isbn>9780780395497</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYhQMiqNv-gN7kD7S--WiaXEqZdTDd0MEuR9u80Wi7jKRM_PdO3Lk5z7l54BByyyBnDMz9drFab3IOoHKmlJKSXZAbKDUIU0jDr8gspU845W-X8ppU82Poj37_Tl-bvQ0DrTEMOEbf0To2hw_6HCz2iboQT9j6HunWR-wxJfqC43eIX2lKLl3TJ5yde0LeHueb6ilbrupF9bDMvIExs8xpYw0g107oljFhBIC0JUpdcM061E5h65gVumsMBy0Kozh2rSukYGJC7v6tHhF3h-iHJv7szi_FL4BDSAI</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Karamchandani, N.</creator><creator>Manjunath, D.</creator><creator>Yogeshwaran, D.</creator><creator>Iyer, S.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Evolving Random Geometric Graph Models for Mobile Wireless Networks</title><author>Karamchandani, N. ; Manjunath, D. ; Yogeshwaran, D. ; Iyer, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d1f89d90e28f38b11393004d7e485281ce8f6ebf1d38ca920835962ecbf54313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Ad hoc networks</topic><topic>Context modeling</topic><topic>Mathematics</topic><topic>Mobile ad hoc networks</topic><topic>Probability distribution</topic><topic>Solid modeling</topic><topic>Stochastic processes</topic><topic>Throughput</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Karamchandani, N.</creatorcontrib><creatorcontrib>Manjunath, D.</creatorcontrib><creatorcontrib>Yogeshwaran, D.</creatorcontrib><creatorcontrib>Iyer, S.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karamchandani, N.</au><au>Manjunath, D.</au><au>Yogeshwaran, D.</au><au>Iyer, S.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolving Random Geometric Graph Models for Mobile Wireless Networks</atitle><btitle>2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks</btitle><stitle>WIOPT</stitle><date>2006</date><risdate>2006</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>0780395492</isbn><isbn>9780780395497</isbn><abstract>We consider evolving exponential RGGs in one dimension and characterize the time dependent behavior of some of their topological properties. We consider two evolution models and study one of them detail while providing a summary of the results for the other. In the first model, the inter-nodal gaps evolve according to an exponential AR(1) process that makes the stationary distribution of the node locations exponential. For this model we obtain the one-step conditional connectivity probabilities and extend it to the k-step case. Finite and asymptotic analysis are given. We then obtain the k-step connectivity probability conditioned on the network being disconnected. We also derive the pmf of the first passage time for a connected network to become disconnected. We then describe a random birth-death model where at each instant, the node locations evolve according to an AR(1) process. In addition, a random node is allowed to die while giving birth to a node at another location. We derive properties similar to those above.</abstract><pub>IEEE</pub><doi>10.1109/WIOPT.2006.1666441</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780395492
ispartof 2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006, p.1-7
issn
language eng
recordid cdi_ieee_primary_1666441
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Ad hoc networks
Context modeling
Mathematics
Mobile ad hoc networks
Probability distribution
Solid modeling
Stochastic processes
Throughput
Wireless networks
Wireless sensor networks
title Evolving Random Geometric Graph Models for Mobile Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolving%20Random%20Geometric%20Graph%20Models%20for%20Mobile%20Wireless%20Networks&rft.btitle=2006%204th%20International%20Symposium%20on%20Modeling%20and%20Optimization%20in%20Mobile,%20Ad%20Hoc%20and%20Wireless%20Networks&rft.au=Karamchandani,%20N.&rft.date=2006&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=0780395492&rft.isbn_list=9780780395497&rft_id=info:doi/10.1109/WIOPT.2006.1666441&rft_dat=%3Cieee_6IE%3E1666441%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1666441&rfr_iscdi=true