An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method

Environment maps are extensively used as natural light sources in realistic rendering. We propose a stratified sampling scheme for environment maps by first stratifying the maps into a set of rectangular regions with median cut method, then estimating the contribution of the regions with Monte Carlo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mei, Xing, Jaeger, Marc, Hu, Bao-Gang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue
container_start_page 384
container_title
container_volume
creator Mei, Xing
Jaeger, Marc
Hu, Bao-Gang
description Environment maps are extensively used as natural light sources in realistic rendering. We propose a stratified sampling scheme for environment maps by first stratifying the maps into a set of rectangular regions with median cut method, then estimating the contribution of the regions with Monte Carlo integration techniques. In this way, illumination, surface reflectance and spatial distribution are all taken into consideration for the generation of the light samples. Compared with the existing biased lighting techniques, the presented scheme produces unbiased rendering results with less noise and better shadow boundaries, particularly at low sampling rates. The proposed spatial distribution of the samples also helps to overcome the sample-clumping problem in traditional illumination-based importance sampling method. Experimental results indicate that the scheme is fast, simple to implement and effective
doi_str_mv 10.1109/CGIV.2006.19
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_1663821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1663821</ieee_id><sourcerecordid>oai_HAL_inria_00122644v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1649-9da7b628e70f42768f183e5dcdd2442226c17c54110ed261e1b130e1e7ed2da93</originalsourceid><addsrcrecordid>eNo9j8FLwzAYxQMiqHM3b15yl858SZY2x1HqNujwUPVasuaLjaxpaWvF_36Fie_yeI8fDx4hD8BWAEw_p9v9x4ozplagr8gdi5Vec8WUuCHLYfhis4SWgqlbUmwCzZzDavQT0mLszeidR0sL03QnHz5pUdXYIHVtT7Mw-b4NDYaRHkw30B8_1vSA1ptA0--5xLFu7T25duY04PLPF-T9JXtLd1H-ut2nmzyqQUkdaWvio-IJxsxJHqvEQSJwbStruZScc1VBXK3lfAktV4BwBMEQMJ6jNVosyNNltzansut9Y_rfsjW-3G3y0ofem5IxmHeknGCmHy-0R8R_HJQSCQdxBtgXWso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mei, Xing ; Jaeger, Marc ; Hu, Bao-Gang</creator><creatorcontrib>Mei, Xing ; Jaeger, Marc ; Hu, Bao-Gang</creatorcontrib><description>Environment maps are extensively used as natural light sources in realistic rendering. We propose a stratified sampling scheme for environment maps by first stratifying the maps into a set of rectangular regions with median cut method, then estimating the contribution of the regions with Monte Carlo integration techniques. In this way, illumination, surface reflectance and spatial distribution are all taken into consideration for the generation of the light samples. Compared with the existing biased lighting techniques, the presented scheme produces unbiased rendering results with less noise and better shadow boundaries, particularly at low sampling rates. The proposed spatial distribution of the samples also helps to overcome the sample-clumping problem in traditional illumination-based importance sampling method. Experimental results indicate that the scheme is fast, simple to implement and effective</description><identifier>ISBN: 0769526063</identifier><identifier>ISBN: 9780769526065</identifier><identifier>DOI: 10.1109/CGIV.2006.19</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Computer Science ; Image generation ; Image sampling ; Light sources ; Lighting ; Monte Carlo methods ; Noise reduction ; Other ; Reflectivity ; Rendering (computer graphics) ; Sampling methods</subject><ispartof>International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06), 2006, p.384-389</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1663821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1663821$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/inria-00122644$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Xing</creatorcontrib><creatorcontrib>Jaeger, Marc</creatorcontrib><creatorcontrib>Hu, Bao-Gang</creatorcontrib><title>An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method</title><title>International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)</title><addtitle>CGIV</addtitle><description>Environment maps are extensively used as natural light sources in realistic rendering. We propose a stratified sampling scheme for environment maps by first stratifying the maps into a set of rectangular regions with median cut method, then estimating the contribution of the regions with Monte Carlo integration techniques. In this way, illumination, surface reflectance and spatial distribution are all taken into consideration for the generation of the light samples. Compared with the existing biased lighting techniques, the presented scheme produces unbiased rendering results with less noise and better shadow boundaries, particularly at low sampling rates. The proposed spatial distribution of the samples also helps to overcome the sample-clumping problem in traditional illumination-based importance sampling method. Experimental results indicate that the scheme is fast, simple to implement and effective</description><subject>Automation</subject><subject>Computer Science</subject><subject>Image generation</subject><subject>Image sampling</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Monte Carlo methods</subject><subject>Noise reduction</subject><subject>Other</subject><subject>Reflectivity</subject><subject>Rendering (computer graphics)</subject><subject>Sampling methods</subject><isbn>0769526063</isbn><isbn>9780769526065</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j8FLwzAYxQMiqHM3b15yl858SZY2x1HqNujwUPVasuaLjaxpaWvF_36Fie_yeI8fDx4hD8BWAEw_p9v9x4ozplagr8gdi5Vec8WUuCHLYfhis4SWgqlbUmwCzZzDavQT0mLszeidR0sL03QnHz5pUdXYIHVtT7Mw-b4NDYaRHkw30B8_1vSA1ptA0--5xLFu7T25duY04PLPF-T9JXtLd1H-ut2nmzyqQUkdaWvio-IJxsxJHqvEQSJwbStruZScc1VBXK3lfAktV4BwBMEQMJ6jNVosyNNltzansut9Y_rfsjW-3G3y0ofem5IxmHeknGCmHy-0R8R_HJQSCQdxBtgXWso</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Mei, Xing</creator><creator>Jaeger, Marc</creator><creator>Hu, Bao-Gang</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope></search><sort><creationdate>2006</creationdate><title>An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method</title><author>Mei, Xing ; Jaeger, Marc ; Hu, Bao-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1649-9da7b628e70f42768f183e5dcdd2442226c17c54110ed261e1b130e1e7ed2da93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Automation</topic><topic>Computer Science</topic><topic>Image generation</topic><topic>Image sampling</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Monte Carlo methods</topic><topic>Noise reduction</topic><topic>Other</topic><topic>Reflectivity</topic><topic>Rendering (computer graphics)</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Mei, Xing</creatorcontrib><creatorcontrib>Jaeger, Marc</creatorcontrib><creatorcontrib>Hu, Bao-Gang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mei, Xing</au><au>Jaeger, Marc</au><au>Hu, Bao-Gang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method</atitle><btitle>International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)</btitle><stitle>CGIV</stitle><date>2006</date><risdate>2006</risdate><spage>384</spage><epage>389</epage><pages>384-389</pages><isbn>0769526063</isbn><isbn>9780769526065</isbn><abstract>Environment maps are extensively used as natural light sources in realistic rendering. We propose a stratified sampling scheme for environment maps by first stratifying the maps into a set of rectangular regions with median cut method, then estimating the contribution of the regions with Monte Carlo integration techniques. In this way, illumination, surface reflectance and spatial distribution are all taken into consideration for the generation of the light samples. Compared with the existing biased lighting techniques, the presented scheme produces unbiased rendering results with less noise and better shadow boundaries, particularly at low sampling rates. The proposed spatial distribution of the samples also helps to overcome the sample-clumping problem in traditional illumination-based importance sampling method. Experimental results indicate that the scheme is fast, simple to implement and effective</abstract><pub>IEEE</pub><doi>10.1109/CGIV.2006.19</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769526063
ispartof International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06), 2006, p.384-389
issn
language eng
recordid cdi_ieee_primary_1663821
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automation
Computer Science
Image generation
Image sampling
Light sources
Lighting
Monte Carlo methods
Noise reduction
Other
Reflectivity
Rendering (computer graphics)
Sampling methods
title An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Effective%20Stratified%20Sampling%20Scheme%20for%20Environment%20Maps%20with%20Median%20Cut%20Method&rft.btitle=International%20Conference%20on%20Computer%20Graphics,%20Imaging%20and%20Visualisation%20(CGIV'06)&rft.au=Mei,%20Xing&rft.date=2006&rft.spage=384&rft.epage=389&rft.pages=384-389&rft.isbn=0769526063&rft.isbn_list=9780769526065&rft_id=info:doi/10.1109/CGIV.2006.19&rft_dat=%3Chal_6IE%3Eoai_HAL_inria_00122644v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1663821&rfr_iscdi=true