An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method
Environment maps are extensively used as natural light sources in realistic rendering. We propose a stratified sampling scheme for environment maps by first stratifying the maps into a set of rectangular regions with median cut method, then estimating the contribution of the regions with Monte Carlo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | |
container_start_page | 384 |
container_title | |
container_volume | |
creator | Mei, Xing Jaeger, Marc Hu, Bao-Gang |
description | Environment maps are extensively used as natural light sources in realistic rendering. We propose a stratified sampling scheme for environment maps by first stratifying the maps into a set of rectangular regions with median cut method, then estimating the contribution of the regions with Monte Carlo integration techniques. In this way, illumination, surface reflectance and spatial distribution are all taken into consideration for the generation of the light samples. Compared with the existing biased lighting techniques, the presented scheme produces unbiased rendering results with less noise and better shadow boundaries, particularly at low sampling rates. The proposed spatial distribution of the samples also helps to overcome the sample-clumping problem in traditional illumination-based importance sampling method. Experimental results indicate that the scheme is fast, simple to implement and effective |
doi_str_mv | 10.1109/CGIV.2006.19 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_1663821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1663821</ieee_id><sourcerecordid>oai_HAL_inria_00122644v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1649-9da7b628e70f42768f183e5dcdd2442226c17c54110ed261e1b130e1e7ed2da93</originalsourceid><addsrcrecordid>eNo9j8FLwzAYxQMiqHM3b15yl858SZY2x1HqNujwUPVasuaLjaxpaWvF_36Fie_yeI8fDx4hD8BWAEw_p9v9x4ozplagr8gdi5Vec8WUuCHLYfhis4SWgqlbUmwCzZzDavQT0mLszeidR0sL03QnHz5pUdXYIHVtT7Mw-b4NDYaRHkw30B8_1vSA1ptA0--5xLFu7T25duY04PLPF-T9JXtLd1H-ut2nmzyqQUkdaWvio-IJxsxJHqvEQSJwbStruZScc1VBXK3lfAktV4BwBMEQMJ6jNVosyNNltzansut9Y_rfsjW-3G3y0ofem5IxmHeknGCmHy-0R8R_HJQSCQdxBtgXWso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mei, Xing ; Jaeger, Marc ; Hu, Bao-Gang</creator><creatorcontrib>Mei, Xing ; Jaeger, Marc ; Hu, Bao-Gang</creatorcontrib><description>Environment maps are extensively used as natural light sources in realistic rendering. We propose a stratified sampling scheme for environment maps by first stratifying the maps into a set of rectangular regions with median cut method, then estimating the contribution of the regions with Monte Carlo integration techniques. In this way, illumination, surface reflectance and spatial distribution are all taken into consideration for the generation of the light samples. Compared with the existing biased lighting techniques, the presented scheme produces unbiased rendering results with less noise and better shadow boundaries, particularly at low sampling rates. The proposed spatial distribution of the samples also helps to overcome the sample-clumping problem in traditional illumination-based importance sampling method. Experimental results indicate that the scheme is fast, simple to implement and effective</description><identifier>ISBN: 0769526063</identifier><identifier>ISBN: 9780769526065</identifier><identifier>DOI: 10.1109/CGIV.2006.19</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Computer Science ; Image generation ; Image sampling ; Light sources ; Lighting ; Monte Carlo methods ; Noise reduction ; Other ; Reflectivity ; Rendering (computer graphics) ; Sampling methods</subject><ispartof>International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06), 2006, p.384-389</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1663821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1663821$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/inria-00122644$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Xing</creatorcontrib><creatorcontrib>Jaeger, Marc</creatorcontrib><creatorcontrib>Hu, Bao-Gang</creatorcontrib><title>An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method</title><title>International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)</title><addtitle>CGIV</addtitle><description>Environment maps are extensively used as natural light sources in realistic rendering. We propose a stratified sampling scheme for environment maps by first stratifying the maps into a set of rectangular regions with median cut method, then estimating the contribution of the regions with Monte Carlo integration techniques. In this way, illumination, surface reflectance and spatial distribution are all taken into consideration for the generation of the light samples. Compared with the existing biased lighting techniques, the presented scheme produces unbiased rendering results with less noise and better shadow boundaries, particularly at low sampling rates. The proposed spatial distribution of the samples also helps to overcome the sample-clumping problem in traditional illumination-based importance sampling method. Experimental results indicate that the scheme is fast, simple to implement and effective</description><subject>Automation</subject><subject>Computer Science</subject><subject>Image generation</subject><subject>Image sampling</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Monte Carlo methods</subject><subject>Noise reduction</subject><subject>Other</subject><subject>Reflectivity</subject><subject>Rendering (computer graphics)</subject><subject>Sampling methods</subject><isbn>0769526063</isbn><isbn>9780769526065</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j8FLwzAYxQMiqHM3b15yl858SZY2x1HqNujwUPVasuaLjaxpaWvF_36Fie_yeI8fDx4hD8BWAEw_p9v9x4ozplagr8gdi5Vec8WUuCHLYfhis4SWgqlbUmwCzZzDavQT0mLszeidR0sL03QnHz5pUdXYIHVtT7Mw-b4NDYaRHkw30B8_1vSA1ptA0--5xLFu7T25duY04PLPF-T9JXtLd1H-ut2nmzyqQUkdaWvio-IJxsxJHqvEQSJwbStruZScc1VBXK3lfAktV4BwBMEQMJ6jNVosyNNltzansut9Y_rfsjW-3G3y0ofem5IxmHeknGCmHy-0R8R_HJQSCQdxBtgXWso</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Mei, Xing</creator><creator>Jaeger, Marc</creator><creator>Hu, Bao-Gang</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope></search><sort><creationdate>2006</creationdate><title>An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method</title><author>Mei, Xing ; Jaeger, Marc ; Hu, Bao-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1649-9da7b628e70f42768f183e5dcdd2442226c17c54110ed261e1b130e1e7ed2da93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Automation</topic><topic>Computer Science</topic><topic>Image generation</topic><topic>Image sampling</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Monte Carlo methods</topic><topic>Noise reduction</topic><topic>Other</topic><topic>Reflectivity</topic><topic>Rendering (computer graphics)</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Mei, Xing</creatorcontrib><creatorcontrib>Jaeger, Marc</creatorcontrib><creatorcontrib>Hu, Bao-Gang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mei, Xing</au><au>Jaeger, Marc</au><au>Hu, Bao-Gang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method</atitle><btitle>International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)</btitle><stitle>CGIV</stitle><date>2006</date><risdate>2006</risdate><spage>384</spage><epage>389</epage><pages>384-389</pages><isbn>0769526063</isbn><isbn>9780769526065</isbn><abstract>Environment maps are extensively used as natural light sources in realistic rendering. We propose a stratified sampling scheme for environment maps by first stratifying the maps into a set of rectangular regions with median cut method, then estimating the contribution of the regions with Monte Carlo integration techniques. In this way, illumination, surface reflectance and spatial distribution are all taken into consideration for the generation of the light samples. Compared with the existing biased lighting techniques, the presented scheme produces unbiased rendering results with less noise and better shadow boundaries, particularly at low sampling rates. The proposed spatial distribution of the samples also helps to overcome the sample-clumping problem in traditional illumination-based importance sampling method. Experimental results indicate that the scheme is fast, simple to implement and effective</abstract><pub>IEEE</pub><doi>10.1109/CGIV.2006.19</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769526063 |
ispartof | International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06), 2006, p.384-389 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1663821 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automation Computer Science Image generation Image sampling Light sources Lighting Monte Carlo methods Noise reduction Other Reflectivity Rendering (computer graphics) Sampling methods |
title | An Effective Stratified Sampling Scheme for Environment Maps with Median Cut Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Effective%20Stratified%20Sampling%20Scheme%20for%20Environment%20Maps%20with%20Median%20Cut%20Method&rft.btitle=International%20Conference%20on%20Computer%20Graphics,%20Imaging%20and%20Visualisation%20(CGIV'06)&rft.au=Mei,%20Xing&rft.date=2006&rft.spage=384&rft.epage=389&rft.pages=384-389&rft.isbn=0769526063&rft.isbn_list=9780769526065&rft_id=info:doi/10.1109/CGIV.2006.19&rft_dat=%3Chal_6IE%3Eoai_HAL_inria_00122644v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1663821&rfr_iscdi=true |