Connectionist Architectures for Artificial Intelligence

Features of connectionist architectures (CA) in massively parallel computers for AI applications are discussed. A CA involves a large number of simple processors, each connected to a number of the other processors. Each processor has only a small amount of memory, yet the array can cumulatively stor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer (Long Beach, Calif.) Calif.), 1987-01, Vol.20 (1), p.100-109
Hauptverfasser: Fahlman, Scotte, HINTON, GEOFFREYE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 1
container_start_page 100
container_title Computer (Long Beach, Calif.)
container_volume 20
creator Fahlman, Scotte
HINTON, GEOFFREYE
description Features of connectionist architectures (CA) in massively parallel computers for AI applications are discussed. A CA involves a large number of simple processors, each connected to a number of the other processors. Each processor has only a small amount of memory, yet the array can cumulatively store a large amount of data which can be altered by changing the connections among the processors. Each processor is also limited to a few simple arithmetic or Boolean operations. A sufficient number of processors must be available for processing the subtasks of any task assigned the machine. Approaches for performing pattern recognition and learning tasks with CAs are explored. Consideration is given to the NETL system, which uses local representations and marker-passing techniques, a value-passing system, back-propagation, constraint-satisfication in iterative networks, and the Boltzmann learning scheme. (M.S.K.)
doi_str_mv 10.1109/MC.1987.1663364
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1663364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1663364</ieee_id><sourcerecordid>24394686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-266ca35fe79352ada82fefcb3d649edf37971bf56a3fa851a9769279d48c7d453</originalsourceid><addsrcrecordid>eNqNkTlPAzEQhS0EEiFQU9BEFHSb-D7KaMURKREN1JbjtYnRZh1sp-Dfs6uNRAnV6M18M3qaB8AtgnOEoFps6jlSUswR54RwegYmiDFZQYnoOZhAiGSlEMeX4Crnz15SycgEiDp2nbMlxC7kMlsmuwul18fk8szH1HdK8MEG085WXXFtGz5cZ901uPCmze7mVKfg_enxrX6p1q_Pq3q5riwRqlSYc2sI804owrBpjMTeebslDafKNb6HBNp6xg3xRjJklOAKC9VQaUVDGZmC-_FuzCXobAdzOzt61gIpCPkAPYzQIcWvo8tF70O2vVfTuXjMGksh-5eov0FKFOWS_wvEGA4XFyNoU8w5Oa8PKexN-tYI6iEXvan1kIs-5dJv3I0bwTn3S5-mP3PFh_Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24392209</pqid></control><display><type>article</type><title>Connectionist Architectures for Artificial Intelligence</title><source>IEEE/IET Electronic Library</source><creator>Fahlman, Scotte ; HINTON, GEOFFREYE</creator><creatorcontrib>Fahlman, Scotte ; HINTON, GEOFFREYE ; Carnegie-Mellon Univ</creatorcontrib><description>Features of connectionist architectures (CA) in massively parallel computers for AI applications are discussed. A CA involves a large number of simple processors, each connected to a number of the other processors. Each processor has only a small amount of memory, yet the array can cumulatively store a large amount of data which can be altered by changing the connections among the processors. Each processor is also limited to a few simple arithmetic or Boolean operations. A sufficient number of processors must be available for processing the subtasks of any task assigned the machine. Approaches for performing pattern recognition and learning tasks with CAs are explored. Consideration is given to the NETL system, which uses local representations and marker-passing techniques, a value-passing system, back-propagation, constraint-satisfication in iterative networks, and the Boltzmann learning scheme. (M.S.K.)</description><identifier>ISSN: 0018-9162</identifier><identifier>EISSN: 1558-0814</identifier><identifier>DOI: 10.1109/MC.1987.1663364</identifier><identifier>CODEN: CPTRB4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>990210 - Supercomputers- (1987-1989) ; Acoustic noise ; ARTIFICIAL INTELLIGENCE ; COMPUTER ARCHITECTURE ; COMPUTERS ; DIGITAL COMPUTERS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Intelligent networks ; Intelligent sensors ; KNOWLEDGE BASE ; Machine intelligence ; Medical diagnosis ; MEMORY DEVICES ; Parallel architectures ; PARALLEL PROCESSING ; PROGRAMMING ; RESEARCH PROGRAMS ; Shape ; Speech recognition ; SUPERCOMPUTERS</subject><ispartof>Computer (Long Beach, Calif.), 1987-01, Vol.20 (1), p.100-109</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-266ca35fe79352ada82fefcb3d649edf37971bf56a3fa851a9769279d48c7d453</citedby><cites>FETCH-LOGICAL-c379t-266ca35fe79352ada82fefcb3d649edf37971bf56a3fa851a9769279d48c7d453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1663364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1663364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/7190065$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fahlman, Scotte</creatorcontrib><creatorcontrib>HINTON, GEOFFREYE</creatorcontrib><creatorcontrib>Carnegie-Mellon Univ</creatorcontrib><title>Connectionist Architectures for Artificial Intelligence</title><title>Computer (Long Beach, Calif.)</title><addtitle>MC</addtitle><description>Features of connectionist architectures (CA) in massively parallel computers for AI applications are discussed. A CA involves a large number of simple processors, each connected to a number of the other processors. Each processor has only a small amount of memory, yet the array can cumulatively store a large amount of data which can be altered by changing the connections among the processors. Each processor is also limited to a few simple arithmetic or Boolean operations. A sufficient number of processors must be available for processing the subtasks of any task assigned the machine. Approaches for performing pattern recognition and learning tasks with CAs are explored. Consideration is given to the NETL system, which uses local representations and marker-passing techniques, a value-passing system, back-propagation, constraint-satisfication in iterative networks, and the Boltzmann learning scheme. (M.S.K.)</description><subject>990210 - Supercomputers- (1987-1989)</subject><subject>Acoustic noise</subject><subject>ARTIFICIAL INTELLIGENCE</subject><subject>COMPUTER ARCHITECTURE</subject><subject>COMPUTERS</subject><subject>DIGITAL COMPUTERS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Intelligent networks</subject><subject>Intelligent sensors</subject><subject>KNOWLEDGE BASE</subject><subject>Machine intelligence</subject><subject>Medical diagnosis</subject><subject>MEMORY DEVICES</subject><subject>Parallel architectures</subject><subject>PARALLEL PROCESSING</subject><subject>PROGRAMMING</subject><subject>RESEARCH PROGRAMS</subject><subject>Shape</subject><subject>Speech recognition</subject><subject>SUPERCOMPUTERS</subject><issn>0018-9162</issn><issn>1558-0814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqNkTlPAzEQhS0EEiFQU9BEFHSb-D7KaMURKREN1JbjtYnRZh1sp-Dfs6uNRAnV6M18M3qaB8AtgnOEoFps6jlSUswR54RwegYmiDFZQYnoOZhAiGSlEMeX4Crnz15SycgEiDp2nbMlxC7kMlsmuwul18fk8szH1HdK8MEG085WXXFtGz5cZ901uPCmze7mVKfg_enxrX6p1q_Pq3q5riwRqlSYc2sI804owrBpjMTeebslDafKNb6HBNp6xg3xRjJklOAKC9VQaUVDGZmC-_FuzCXobAdzOzt61gIpCPkAPYzQIcWvo8tF70O2vVfTuXjMGksh-5eov0FKFOWS_wvEGA4XFyNoU8w5Oa8PKexN-tYI6iEXvan1kIs-5dJv3I0bwTn3S5-mP3PFh_Y</recordid><startdate>198701</startdate><enddate>198701</enddate><creator>Fahlman, Scotte</creator><creator>HINTON, GEOFFREYE</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>OTOTI</scope></search><sort><creationdate>198701</creationdate><title>Connectionist Architectures for Artificial Intelligence</title><author>Fahlman, Scotte ; HINTON, GEOFFREYE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-266ca35fe79352ada82fefcb3d649edf37971bf56a3fa851a9769279d48c7d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>990210 - Supercomputers- (1987-1989)</topic><topic>Acoustic noise</topic><topic>ARTIFICIAL INTELLIGENCE</topic><topic>COMPUTER ARCHITECTURE</topic><topic>COMPUTERS</topic><topic>DIGITAL COMPUTERS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Intelligent networks</topic><topic>Intelligent sensors</topic><topic>KNOWLEDGE BASE</topic><topic>Machine intelligence</topic><topic>Medical diagnosis</topic><topic>MEMORY DEVICES</topic><topic>Parallel architectures</topic><topic>PARALLEL PROCESSING</topic><topic>PROGRAMMING</topic><topic>RESEARCH PROGRAMS</topic><topic>Shape</topic><topic>Speech recognition</topic><topic>SUPERCOMPUTERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahlman, Scotte</creatorcontrib><creatorcontrib>HINTON, GEOFFREYE</creatorcontrib><creatorcontrib>Carnegie-Mellon Univ</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Computer (Long Beach, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fahlman, Scotte</au><au>HINTON, GEOFFREYE</au><aucorp>Carnegie-Mellon Univ</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectionist Architectures for Artificial Intelligence</atitle><jtitle>Computer (Long Beach, Calif.)</jtitle><stitle>MC</stitle><date>1987-01</date><risdate>1987</risdate><volume>20</volume><issue>1</issue><spage>100</spage><epage>109</epage><pages>100-109</pages><issn>0018-9162</issn><eissn>1558-0814</eissn><coden>CPTRB4</coden><abstract>Features of connectionist architectures (CA) in massively parallel computers for AI applications are discussed. A CA involves a large number of simple processors, each connected to a number of the other processors. Each processor has only a small amount of memory, yet the array can cumulatively store a large amount of data which can be altered by changing the connections among the processors. Each processor is also limited to a few simple arithmetic or Boolean operations. A sufficient number of processors must be available for processing the subtasks of any task assigned the machine. Approaches for performing pattern recognition and learning tasks with CAs are explored. Consideration is given to the NETL system, which uses local representations and marker-passing techniques, a value-passing system, back-propagation, constraint-satisfication in iterative networks, and the Boltzmann learning scheme. (M.S.K.)</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/MC.1987.1663364</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9162
ispartof Computer (Long Beach, Calif.), 1987-01, Vol.20 (1), p.100-109
issn 0018-9162
1558-0814
language eng
recordid cdi_ieee_primary_1663364
source IEEE/IET Electronic Library
subjects 990210 - Supercomputers- (1987-1989)
Acoustic noise
ARTIFICIAL INTELLIGENCE
COMPUTER ARCHITECTURE
COMPUTERS
DIGITAL COMPUTERS
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Intelligent networks
Intelligent sensors
KNOWLEDGE BASE
Machine intelligence
Medical diagnosis
MEMORY DEVICES
Parallel architectures
PARALLEL PROCESSING
PROGRAMMING
RESEARCH PROGRAMS
Shape
Speech recognition
SUPERCOMPUTERS
title Connectionist Architectures for Artificial Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectionist%20Architectures%20for%20Artificial%20Intelligence&rft.jtitle=Computer%20(Long%20Beach,%20Calif.)&rft.au=Fahlman,%20Scotte&rft.aucorp=Carnegie-Mellon%20Univ&rft.date=1987-01&rft.volume=20&rft.issue=1&rft.spage=100&rft.epage=109&rft.pages=100-109&rft.issn=0018-9162&rft.eissn=1558-0814&rft.coden=CPTRB4&rft_id=info:doi/10.1109/MC.1987.1663364&rft_dat=%3Cproquest_RIE%3E24394686%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24392209&rft_id=info:pmid/&rft_ieee_id=1663364&rfr_iscdi=true