Adaptive Performance Control of Computing Systems via Distributed Cooperative Control: Application to Power Management in Computing Clusters

Advanced control and optimization techniques offer a theoretically sound basis to enable self-managing behavior in distributed computing models such as utility computing. To tractably solve the performance management problems of interest, including resource allocation and provisioning in such distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mianyu Wang, Kandasamy, N., Guez, A., Kam, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue
container_start_page 165
container_title
container_volume
creator Mianyu Wang
Kandasamy, N.
Guez, A.
Kam, M.
description Advanced control and optimization techniques offer a theoretically sound basis to enable self-managing behavior in distributed computing models such as utility computing. To tractably solve the performance management problems of interest, including resource allocation and provisioning in such distributed computing environments, we develop a fully decentralized control framework wherein the optimization problem for the system is first decomposed into sub-problems and each sub-problem is solved separately by individual controllers to achieve the overall performance objectives. Concepts from optimal control theory are used to implement individual controllers. The proposed framework is highly scalable, naturally tolerates controller failures and allows for the dynamic addition/removal of controllers during system operation. As a case study, we apply the control framework to minimize the power consumed by a computing cluster subject to a dynamic workload while satisfying the specified quality-of-service goals. Simulations using real-world workload traces show that the proposed technique has very low control overhead and adapts quickly to both workload variations and controller failures.
doi_str_mv 10.1109/ICAC.2006.1662395
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1662395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1662395</ieee_id><sourcerecordid>1662395</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3633b2e8069405b47e3ad1fe9b80bcfc11b51808a1a4c318ce6698902fd2e2503</originalsourceid><addsrcrecordid>eNpNkE1qwzAQhQWl0DbNAUo3ukDckWQrUnfG_YWUBpp9kO1xULElIykpuUMPXdNm0dnM4_HmgzeE3DDIGAN991qVVcYBZMak5EIXZ-SK5TzPgS2L4oLMY_yEaYQWiutL8l22Zkz2gHSNofNhMK5BWnmXgu-p7yY5jPtk3Y5-HGPCIdKDNfTBxhRsvU_YTgk_YjC_kNPhPS3HsbfNZHpHk6dr_4WBvhlndjigS9S6f-Sq30_oEK_JeWf6iPPTnpHN0-Omelms3p-nYquF1ZAWQgpRc1QgdQ5FnS9RmJZ1qGsFddM1jNUFU6AMM3kjmGpQSq008K7lyAsQM3L7h7WIuB2DHUw4bk__Ej9OlGPF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Performance Control of Computing Systems via Distributed Cooperative Control: Application to Power Management in Computing Clusters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mianyu Wang ; Kandasamy, N. ; Guez, A. ; Kam, M.</creator><creatorcontrib>Mianyu Wang ; Kandasamy, N. ; Guez, A. ; Kam, M.</creatorcontrib><description>Advanced control and optimization techniques offer a theoretically sound basis to enable self-managing behavior in distributed computing models such as utility computing. To tractably solve the performance management problems of interest, including resource allocation and provisioning in such distributed computing environments, we develop a fully decentralized control framework wherein the optimization problem for the system is first decomposed into sub-problems and each sub-problem is solved separately by individual controllers to achieve the overall performance objectives. Concepts from optimal control theory are used to implement individual controllers. The proposed framework is highly scalable, naturally tolerates controller failures and allows for the dynamic addition/removal of controllers during system operation. As a case study, we apply the control framework to minimize the power consumed by a computing cluster subject to a dynamic workload while satisfying the specified quality-of-service goals. Simulations using real-world workload traces show that the proposed technique has very low control overhead and adapts quickly to both workload variations and controller failures.</description><identifier>ISBN: 1424401755</identifier><identifier>ISBN: 9781424401758</identifier><identifier>DOI: 10.1109/ICAC.2006.1662395</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Control systems ; Distributed computing ; Distributed control ; Energy management ; Optimal control ; Power system management ; Power system modeling ; Programmable control ; Resource management</subject><ispartof>2006 IEEE International Conference on Autonomic Computing, 2006, p.165-174</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1662395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1662395$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mianyu Wang</creatorcontrib><creatorcontrib>Kandasamy, N.</creatorcontrib><creatorcontrib>Guez, A.</creatorcontrib><creatorcontrib>Kam, M.</creatorcontrib><title>Adaptive Performance Control of Computing Systems via Distributed Cooperative Control: Application to Power Management in Computing Clusters</title><title>2006 IEEE International Conference on Autonomic Computing</title><addtitle>ICAC</addtitle><description>Advanced control and optimization techniques offer a theoretically sound basis to enable self-managing behavior in distributed computing models such as utility computing. To tractably solve the performance management problems of interest, including resource allocation and provisioning in such distributed computing environments, we develop a fully decentralized control framework wherein the optimization problem for the system is first decomposed into sub-problems and each sub-problem is solved separately by individual controllers to achieve the overall performance objectives. Concepts from optimal control theory are used to implement individual controllers. The proposed framework is highly scalable, naturally tolerates controller failures and allows for the dynamic addition/removal of controllers during system operation. As a case study, we apply the control framework to minimize the power consumed by a computing cluster subject to a dynamic workload while satisfying the specified quality-of-service goals. Simulations using real-world workload traces show that the proposed technique has very low control overhead and adapts quickly to both workload variations and controller failures.</description><subject>Adaptive control</subject><subject>Control systems</subject><subject>Distributed computing</subject><subject>Distributed control</subject><subject>Energy management</subject><subject>Optimal control</subject><subject>Power system management</subject><subject>Power system modeling</subject><subject>Programmable control</subject><subject>Resource management</subject><isbn>1424401755</isbn><isbn>9781424401758</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1qwzAQhQWl0DbNAUo3ukDckWQrUnfG_YWUBpp9kO1xULElIykpuUMPXdNm0dnM4_HmgzeE3DDIGAN991qVVcYBZMak5EIXZ-SK5TzPgS2L4oLMY_yEaYQWiutL8l22Zkz2gHSNofNhMK5BWnmXgu-p7yY5jPtk3Y5-HGPCIdKDNfTBxhRsvU_YTgk_YjC_kNPhPS3HsbfNZHpHk6dr_4WBvhlndjigS9S6f-Sq30_oEK_JeWf6iPPTnpHN0-Omelms3p-nYquF1ZAWQgpRc1QgdQ5FnS9RmJZ1qGsFddM1jNUFU6AMM3kjmGpQSq008K7lyAsQM3L7h7WIuB2DHUw4bk__Ej9OlGPF</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Mianyu Wang</creator><creator>Kandasamy, N.</creator><creator>Guez, A.</creator><creator>Kam, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Adaptive Performance Control of Computing Systems via Distributed Cooperative Control: Application to Power Management in Computing Clusters</title><author>Mianyu Wang ; Kandasamy, N. ; Guez, A. ; Kam, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3633b2e8069405b47e3ad1fe9b80bcfc11b51808a1a4c318ce6698902fd2e2503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive control</topic><topic>Control systems</topic><topic>Distributed computing</topic><topic>Distributed control</topic><topic>Energy management</topic><topic>Optimal control</topic><topic>Power system management</topic><topic>Power system modeling</topic><topic>Programmable control</topic><topic>Resource management</topic><toplevel>online_resources</toplevel><creatorcontrib>Mianyu Wang</creatorcontrib><creatorcontrib>Kandasamy, N.</creatorcontrib><creatorcontrib>Guez, A.</creatorcontrib><creatorcontrib>Kam, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mianyu Wang</au><au>Kandasamy, N.</au><au>Guez, A.</au><au>Kam, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Performance Control of Computing Systems via Distributed Cooperative Control: Application to Power Management in Computing Clusters</atitle><btitle>2006 IEEE International Conference on Autonomic Computing</btitle><stitle>ICAC</stitle><date>2006</date><risdate>2006</risdate><spage>165</spage><epage>174</epage><pages>165-174</pages><isbn>1424401755</isbn><isbn>9781424401758</isbn><abstract>Advanced control and optimization techniques offer a theoretically sound basis to enable self-managing behavior in distributed computing models such as utility computing. To tractably solve the performance management problems of interest, including resource allocation and provisioning in such distributed computing environments, we develop a fully decentralized control framework wherein the optimization problem for the system is first decomposed into sub-problems and each sub-problem is solved separately by individual controllers to achieve the overall performance objectives. Concepts from optimal control theory are used to implement individual controllers. The proposed framework is highly scalable, naturally tolerates controller failures and allows for the dynamic addition/removal of controllers during system operation. As a case study, we apply the control framework to minimize the power consumed by a computing cluster subject to a dynamic workload while satisfying the specified quality-of-service goals. Simulations using real-world workload traces show that the proposed technique has very low control overhead and adapts quickly to both workload variations and controller failures.</abstract><pub>IEEE</pub><doi>10.1109/ICAC.2006.1662395</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424401755
ispartof 2006 IEEE International Conference on Autonomic Computing, 2006, p.165-174
issn
language eng
recordid cdi_ieee_primary_1662395
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Control systems
Distributed computing
Distributed control
Energy management
Optimal control
Power system management
Power system modeling
Programmable control
Resource management
title Adaptive Performance Control of Computing Systems via Distributed Cooperative Control: Application to Power Management in Computing Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Performance%20Control%20of%20Computing%20Systems%20via%20Distributed%20Cooperative%20Control:%20Application%20to%20Power%20Management%20in%20Computing%20Clusters&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Autonomic%20Computing&rft.au=Mianyu%20Wang&rft.date=2006&rft.spage=165&rft.epage=174&rft.pages=165-174&rft.isbn=1424401755&rft.isbn_list=9781424401758&rft_id=info:doi/10.1109/ICAC.2006.1662395&rft_dat=%3Cieee_6IE%3E1662395%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1662395&rfr_iscdi=true