Random Projections of Signal Manifolds

Random projections have recently found a surprising niche in signal processing. The key revelation is that the relevant structure in a signal can be preserved when that signal is projected onto a small number of random basis functions. Recent work has exploited this fact under the rubric of compress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wakin, M.B., Baraniuk, R.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page V
container_issue
container_start_page V
container_title
container_volume 5
creator Wakin, M.B.
Baraniuk, R.G.
description Random projections have recently found a surprising niche in signal processing. The key revelation is that the relevant structure in a signal can be preserved when that signal is projected onto a small number of random basis functions. Recent work has exploited this fact under the rubric of compressed sensing (CS): signals that are sparse in some basis can be recovered from small numbers of random linear projections. In many cases, however, we may have a more specific low-dimensional model for signals in which the signal class forms a nonlinear manifold in RN. This paper provides preliminary theoretical and experimental evidence that manifold-based signal structure can be preserved using small numbers of random projections. The key theoretical motivation comes from Whitney's embedding theorem, which states that a K-dimensional manifold can be embedded in Ropf 2K+1 . We examine the potential applications of this fact. In particular, we consider the task of recovering a manifold-modeled signal from a small number of random projections. Thanks to our more specific model, we can recover certain signals using far fewer measurements than would be required using sparsity-driven CS techniques
doi_str_mv 10.1109/ICASSP.2006.1661432
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1661432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1661432</ieee_id><sourcerecordid>1661432</sourcerecordid><originalsourceid>FETCH-LOGICAL-i652-21dd9e1f491a86284e80a968d67e5aa3c968678b8b1717899bf6331123c246153</originalsourceid><addsrcrecordid>eNotj0tPwzAQhC0eElHJL-glJ24Ju7az9h5RxUsqoiI9cKuc2EGu0gTFXPj3RKKnmcN8oxkh1ggVIvD96-ahaXaVBKAKiVAreSEyqQyXyPB5KXI2FrXUGjSxvRIZ1hLKJcg3Ik_pCADIZBYuE3cfbvTTqdjN0zF0P3EaUzH1RRO_RjcUb26M_TT4dCuuezekkJ91JfZPj_vNS7l9f172bMtItSwles8Be83oLEmrgwXHZD2ZUDunusWTsa1t0aCxzG1PSiFK1UlNWKuVWP_XxhDC4XuOJzf_Hs4n1R8CAEEi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Random Projections of Signal Manifolds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wakin, M.B. ; Baraniuk, R.G.</creator><creatorcontrib>Wakin, M.B. ; Baraniuk, R.G.</creatorcontrib><description>Random projections have recently found a surprising niche in signal processing. The key revelation is that the relevant structure in a signal can be preserved when that signal is projected onto a small number of random basis functions. Recent work has exploited this fact under the rubric of compressed sensing (CS): signals that are sparse in some basis can be recovered from small numbers of random linear projections. In many cases, however, we may have a more specific low-dimensional model for signals in which the signal class forms a nonlinear manifold in RN. This paper provides preliminary theoretical and experimental evidence that manifold-based signal structure can be preserved using small numbers of random projections. The key theoretical motivation comes from Whitney's embedding theorem, which states that a K-dimensional manifold can be embedded in Ropf 2K+1 . We examine the potential applications of this fact. In particular, we consider the task of recovering a manifold-modeled signal from a small number of random projections. Thanks to our more specific model, we can recover certain signals using far fewer measurements than would be required using sparsity-driven CS techniques</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424404698</identifier><identifier>ISBN: 142440469X</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2006.1661432</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clouds ; Compressed sensing ; Computer science ; Encoding ; Image reconstruction ; Instruments ; Manifolds ; Nearest neighbor searches ; Nonlinear distortion ; Signal processing</subject><ispartof>2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, 2006, Vol.5, p.V-V</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1661432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1661432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wakin, M.B.</creatorcontrib><creatorcontrib>Baraniuk, R.G.</creatorcontrib><title>Random Projections of Signal Manifolds</title><title>2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings</title><addtitle>ICASSP</addtitle><description>Random projections have recently found a surprising niche in signal processing. The key revelation is that the relevant structure in a signal can be preserved when that signal is projected onto a small number of random basis functions. Recent work has exploited this fact under the rubric of compressed sensing (CS): signals that are sparse in some basis can be recovered from small numbers of random linear projections. In many cases, however, we may have a more specific low-dimensional model for signals in which the signal class forms a nonlinear manifold in RN. This paper provides preliminary theoretical and experimental evidence that manifold-based signal structure can be preserved using small numbers of random projections. The key theoretical motivation comes from Whitney's embedding theorem, which states that a K-dimensional manifold can be embedded in Ropf 2K+1 . We examine the potential applications of this fact. In particular, we consider the task of recovering a manifold-modeled signal from a small number of random projections. Thanks to our more specific model, we can recover certain signals using far fewer measurements than would be required using sparsity-driven CS techniques</description><subject>Clouds</subject><subject>Compressed sensing</subject><subject>Computer science</subject><subject>Encoding</subject><subject>Image reconstruction</subject><subject>Instruments</subject><subject>Manifolds</subject><subject>Nearest neighbor searches</subject><subject>Nonlinear distortion</subject><subject>Signal processing</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424404698</isbn><isbn>142440469X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tPwzAQhC0eElHJL-glJ24Ju7az9h5RxUsqoiI9cKuc2EGu0gTFXPj3RKKnmcN8oxkh1ggVIvD96-ahaXaVBKAKiVAreSEyqQyXyPB5KXI2FrXUGjSxvRIZ1hLKJcg3Ik_pCADIZBYuE3cfbvTTqdjN0zF0P3EaUzH1RRO_RjcUb26M_TT4dCuuezekkJ91JfZPj_vNS7l9f172bMtItSwles8Be83oLEmrgwXHZD2ZUDunusWTsa1t0aCxzG1PSiFK1UlNWKuVWP_XxhDC4XuOJzf_Hs4n1R8CAEEi</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Wakin, M.B.</creator><creator>Baraniuk, R.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Random Projections of Signal Manifolds</title><author>Wakin, M.B. ; Baraniuk, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i652-21dd9e1f491a86284e80a968d67e5aa3c968678b8b1717899bf6331123c246153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Clouds</topic><topic>Compressed sensing</topic><topic>Computer science</topic><topic>Encoding</topic><topic>Image reconstruction</topic><topic>Instruments</topic><topic>Manifolds</topic><topic>Nearest neighbor searches</topic><topic>Nonlinear distortion</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Wakin, M.B.</creatorcontrib><creatorcontrib>Baraniuk, R.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wakin, M.B.</au><au>Baraniuk, R.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Random Projections of Signal Manifolds</atitle><btitle>2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings</btitle><stitle>ICASSP</stitle><date>2006</date><risdate>2006</risdate><volume>5</volume><spage>V</spage><epage>V</epage><pages>V-V</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424404698</isbn><isbn>142440469X</isbn><abstract>Random projections have recently found a surprising niche in signal processing. The key revelation is that the relevant structure in a signal can be preserved when that signal is projected onto a small number of random basis functions. Recent work has exploited this fact under the rubric of compressed sensing (CS): signals that are sparse in some basis can be recovered from small numbers of random linear projections. In many cases, however, we may have a more specific low-dimensional model for signals in which the signal class forms a nonlinear manifold in RN. This paper provides preliminary theoretical and experimental evidence that manifold-based signal structure can be preserved using small numbers of random projections. The key theoretical motivation comes from Whitney's embedding theorem, which states that a K-dimensional manifold can be embedded in Ropf 2K+1 . We examine the potential applications of this fact. In particular, we consider the task of recovering a manifold-modeled signal from a small number of random projections. Thanks to our more specific model, we can recover certain signals using far fewer measurements than would be required using sparsity-driven CS techniques</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2006.1661432</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, 2006, Vol.5, p.V-V
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1661432
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clouds
Compressed sensing
Computer science
Encoding
Image reconstruction
Instruments
Manifolds
Nearest neighbor searches
Nonlinear distortion
Signal processing
title Random Projections of Signal Manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Random%20Projections%20of%20Signal%20Manifolds&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Acoustics%20Speech%20and%20Signal%20Processing%20Proceedings&rft.au=Wakin,%20M.B.&rft.date=2006&rft.volume=5&rft.spage=V&rft.epage=V&rft.pages=V-V&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424404698&rft.isbn_list=142440469X&rft_id=info:doi/10.1109/ICASSP.2006.1661432&rft_dat=%3Cieee_6IE%3E1661432%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1661432&rfr_iscdi=true