Adaptive Instructional Planning in Intelligent Learning Systems

Traditional hypermedia techniques add a new dimension to reading, but do not enable precise pedagogical strategies to be followed during the composition of an adaptive course. This paper investigates the use of computational intelligence for adaptive lesson generation in a distance learning environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Seridi, H., Sari, T., Khadir, T., Sellami, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 133
container_title
container_volume
creator Seridi, H.
Sari, T.
Khadir, T.
Sellami, M.
description Traditional hypermedia techniques add a new dimension to reading, but do not enable precise pedagogical strategies to be followed during the composition of an adaptive course. This paper investigates the use of computational intelligence for adaptive lesson generation in a distance learning environment. The predetermination of a set of selection rules based on the assessment results of the learner can increase the system adaptation and affects even more the relevance of the approach. Nevertheless, only the expert tutor is entitled to formulate with certainty a correspondence between learner's profile and the characteristics of learning objects. A methodology is introduced then for producing a decision model that imitated the way decided by the designer. An intelligent mechanism based on a non-symbolic approach system is used for an adaptation of the teaching contents to the learners' performances
doi_str_mv 10.1109/ICALT.2006.1652386
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1652386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1652386</ieee_id><sourcerecordid>1652386</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d81f9eb17fdb01ee2fd84fc4733694dc075843ded4ecd703c78d7e1667ce18653</originalsourceid><addsrcrecordid>eNo9j91KAzEUhIM_YKn7AnqzL7A1ycnmJFdSitbCgoJ74V3ZJmdLZBvLJgp9e6sW52ZgPhhmGLsRfCYEt3erxbxpZ5JzPRO6lmD0GZtIoUUFiG_nrLBoOGpbSw1SXfwzLa5YkdI7PwosoIEJu5_7bp_DF5WrmPL46XL4iN1QvgxdjCFuyxCPJNMwhC3FXDbUjb_56yFl2qVrdtl3Q6Li5FPWPj60i6eqeV7-7KyC5bnyRvSWNgJ7v-GCSPbeqN4pBNBWecexNgo8eUXOIweHxiMJrdGRMLqGKbv9qw1EtN6PYdeNh_XpPXwD1jBMsA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Instructional Planning in Intelligent Learning Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seridi, H. ; Sari, T. ; Khadir, T. ; Sellami, M.</creator><creatorcontrib>Seridi, H. ; Sari, T. ; Khadir, T. ; Sellami, M.</creatorcontrib><description>Traditional hypermedia techniques add a new dimension to reading, but do not enable precise pedagogical strategies to be followed during the composition of an adaptive course. This paper investigates the use of computational intelligence for adaptive lesson generation in a distance learning environment. The predetermination of a set of selection rules based on the assessment results of the learner can increase the system adaptation and affects even more the relevance of the approach. Nevertheless, only the expert tutor is entitled to formulate with certainty a correspondence between learner's profile and the characteristics of learning objects. A methodology is introduced then for producing a decision model that imitated the way decided by the designer. An intelligent mechanism based on a non-symbolic approach system is used for an adaptation of the teaching contents to the learners' performances</description><identifier>ISSN: 2161-3761</identifier><identifier>ISBN: 9780769526324</identifier><identifier>ISBN: 0769526322</identifier><identifier>EISSN: 2161-377X</identifier><identifier>DOI: 10.1109/ICALT.2006.1652386</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Artificial neural networks ; Competitive intelligence ; Computational intelligence ; Courseware ; Education ; Informatics ; Intelligent systems ; Laboratories ; Learning systems</subject><ispartof>Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06), 2006, p.133-135</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1652386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1652386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seridi, H.</creatorcontrib><creatorcontrib>Sari, T.</creatorcontrib><creatorcontrib>Khadir, T.</creatorcontrib><creatorcontrib>Sellami, M.</creatorcontrib><title>Adaptive Instructional Planning in Intelligent Learning Systems</title><title>Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06)</title><addtitle>ICALT</addtitle><description>Traditional hypermedia techniques add a new dimension to reading, but do not enable precise pedagogical strategies to be followed during the composition of an adaptive course. This paper investigates the use of computational intelligence for adaptive lesson generation in a distance learning environment. The predetermination of a set of selection rules based on the assessment results of the learner can increase the system adaptation and affects even more the relevance of the approach. Nevertheless, only the expert tutor is entitled to formulate with certainty a correspondence between learner's profile and the characteristics of learning objects. A methodology is introduced then for producing a decision model that imitated the way decided by the designer. An intelligent mechanism based on a non-symbolic approach system is used for an adaptation of the teaching contents to the learners' performances</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Competitive intelligence</subject><subject>Computational intelligence</subject><subject>Courseware</subject><subject>Education</subject><subject>Informatics</subject><subject>Intelligent systems</subject><subject>Laboratories</subject><subject>Learning systems</subject><issn>2161-3761</issn><issn>2161-377X</issn><isbn>9780769526324</isbn><isbn>0769526322</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j91KAzEUhIM_YKn7AnqzL7A1ycnmJFdSitbCgoJ74V3ZJmdLZBvLJgp9e6sW52ZgPhhmGLsRfCYEt3erxbxpZ5JzPRO6lmD0GZtIoUUFiG_nrLBoOGpbSw1SXfwzLa5YkdI7PwosoIEJu5_7bp_DF5WrmPL46XL4iN1QvgxdjCFuyxCPJNMwhC3FXDbUjb_56yFl2qVrdtl3Q6Li5FPWPj60i6eqeV7-7KyC5bnyRvSWNgJ7v-GCSPbeqN4pBNBWecexNgo8eUXOIweHxiMJrdGRMLqGKbv9qw1EtN6PYdeNh_XpPXwD1jBMsA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Seridi, H.</creator><creator>Sari, T.</creator><creator>Khadir, T.</creator><creator>Sellami, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Adaptive Instructional Planning in Intelligent Learning Systems</title><author>Seridi, H. ; Sari, T. ; Khadir, T. ; Sellami, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d81f9eb17fdb01ee2fd84fc4733694dc075843ded4ecd703c78d7e1667ce18653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Competitive intelligence</topic><topic>Computational intelligence</topic><topic>Courseware</topic><topic>Education</topic><topic>Informatics</topic><topic>Intelligent systems</topic><topic>Laboratories</topic><topic>Learning systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Seridi, H.</creatorcontrib><creatorcontrib>Sari, T.</creatorcontrib><creatorcontrib>Khadir, T.</creatorcontrib><creatorcontrib>Sellami, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seridi, H.</au><au>Sari, T.</au><au>Khadir, T.</au><au>Sellami, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Instructional Planning in Intelligent Learning Systems</atitle><btitle>Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06)</btitle><stitle>ICALT</stitle><date>2006</date><risdate>2006</risdate><spage>133</spage><epage>135</epage><pages>133-135</pages><issn>2161-3761</issn><eissn>2161-377X</eissn><isbn>9780769526324</isbn><isbn>0769526322</isbn><abstract>Traditional hypermedia techniques add a new dimension to reading, but do not enable precise pedagogical strategies to be followed during the composition of an adaptive course. This paper investigates the use of computational intelligence for adaptive lesson generation in a distance learning environment. The predetermination of a set of selection rules based on the assessment results of the learner can increase the system adaptation and affects even more the relevance of the approach. Nevertheless, only the expert tutor is entitled to formulate with certainty a correspondence between learner's profile and the characteristics of learning objects. A methodology is introduced then for producing a decision model that imitated the way decided by the designer. An intelligent mechanism based on a non-symbolic approach system is used for an adaptation of the teaching contents to the learners' performances</abstract><pub>IEEE</pub><doi>10.1109/ICALT.2006.1652386</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-3761
ispartof Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06), 2006, p.133-135
issn 2161-3761
2161-377X
language eng
recordid cdi_ieee_primary_1652386
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive systems
Artificial neural networks
Competitive intelligence
Computational intelligence
Courseware
Education
Informatics
Intelligent systems
Laboratories
Learning systems
title Adaptive Instructional Planning in Intelligent Learning Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Instructional%20Planning%20in%20Intelligent%20Learning%20Systems&rft.btitle=Sixth%20IEEE%20International%20Conference%20on%20Advanced%20Learning%20Technologies%20(ICALT'06)&rft.au=Seridi,%20H.&rft.date=2006&rft.spage=133&rft.epage=135&rft.pages=133-135&rft.issn=2161-3761&rft.eissn=2161-377X&rft.isbn=9780769526324&rft.isbn_list=0769526322&rft_id=info:doi/10.1109/ICALT.2006.1652386&rft_dat=%3Cieee_6IE%3E1652386%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1652386&rfr_iscdi=true