Adaptive Instructional Planning in Intelligent Learning Systems
Traditional hypermedia techniques add a new dimension to reading, but do not enable precise pedagogical strategies to be followed during the composition of an adaptive course. This paper investigates the use of computational intelligence for adaptive lesson generation in a distance learning environm...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | |
container_start_page | 133 |
container_title | |
container_volume | |
creator | Seridi, H. Sari, T. Khadir, T. Sellami, M. |
description | Traditional hypermedia techniques add a new dimension to reading, but do not enable precise pedagogical strategies to be followed during the composition of an adaptive course. This paper investigates the use of computational intelligence for adaptive lesson generation in a distance learning environment. The predetermination of a set of selection rules based on the assessment results of the learner can increase the system adaptation and affects even more the relevance of the approach. Nevertheless, only the expert tutor is entitled to formulate with certainty a correspondence between learner's profile and the characteristics of learning objects. A methodology is introduced then for producing a decision model that imitated the way decided by the designer. An intelligent mechanism based on a non-symbolic approach system is used for an adaptation of the teaching contents to the learners' performances |
doi_str_mv | 10.1109/ICALT.2006.1652386 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1652386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1652386</ieee_id><sourcerecordid>1652386</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d81f9eb17fdb01ee2fd84fc4733694dc075843ded4ecd703c78d7e1667ce18653</originalsourceid><addsrcrecordid>eNo9j91KAzEUhIM_YKn7AnqzL7A1ycnmJFdSitbCgoJ74V3ZJmdLZBvLJgp9e6sW52ZgPhhmGLsRfCYEt3erxbxpZ5JzPRO6lmD0GZtIoUUFiG_nrLBoOGpbSw1SXfwzLa5YkdI7PwosoIEJu5_7bp_DF5WrmPL46XL4iN1QvgxdjCFuyxCPJNMwhC3FXDbUjb_56yFl2qVrdtl3Q6Li5FPWPj60i6eqeV7-7KyC5bnyRvSWNgJ7v-GCSPbeqN4pBNBWecexNgo8eUXOIweHxiMJrdGRMLqGKbv9qw1EtN6PYdeNh_XpPXwD1jBMsA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Instructional Planning in Intelligent Learning Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seridi, H. ; Sari, T. ; Khadir, T. ; Sellami, M.</creator><creatorcontrib>Seridi, H. ; Sari, T. ; Khadir, T. ; Sellami, M.</creatorcontrib><description>Traditional hypermedia techniques add a new dimension to reading, but do not enable precise pedagogical strategies to be followed during the composition of an adaptive course. This paper investigates the use of computational intelligence for adaptive lesson generation in a distance learning environment. The predetermination of a set of selection rules based on the assessment results of the learner can increase the system adaptation and affects even more the relevance of the approach. Nevertheless, only the expert tutor is entitled to formulate with certainty a correspondence between learner's profile and the characteristics of learning objects. A methodology is introduced then for producing a decision model that imitated the way decided by the designer. An intelligent mechanism based on a non-symbolic approach system is used for an adaptation of the teaching contents to the learners' performances</description><identifier>ISSN: 2161-3761</identifier><identifier>ISBN: 9780769526324</identifier><identifier>ISBN: 0769526322</identifier><identifier>EISSN: 2161-377X</identifier><identifier>DOI: 10.1109/ICALT.2006.1652386</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Artificial neural networks ; Competitive intelligence ; Computational intelligence ; Courseware ; Education ; Informatics ; Intelligent systems ; Laboratories ; Learning systems</subject><ispartof>Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06), 2006, p.133-135</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1652386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1652386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seridi, H.</creatorcontrib><creatorcontrib>Sari, T.</creatorcontrib><creatorcontrib>Khadir, T.</creatorcontrib><creatorcontrib>Sellami, M.</creatorcontrib><title>Adaptive Instructional Planning in Intelligent Learning Systems</title><title>Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06)</title><addtitle>ICALT</addtitle><description>Traditional hypermedia techniques add a new dimension to reading, but do not enable precise pedagogical strategies to be followed during the composition of an adaptive course. This paper investigates the use of computational intelligence for adaptive lesson generation in a distance learning environment. The predetermination of a set of selection rules based on the assessment results of the learner can increase the system adaptation and affects even more the relevance of the approach. Nevertheless, only the expert tutor is entitled to formulate with certainty a correspondence between learner's profile and the characteristics of learning objects. A methodology is introduced then for producing a decision model that imitated the way decided by the designer. An intelligent mechanism based on a non-symbolic approach system is used for an adaptation of the teaching contents to the learners' performances</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Competitive intelligence</subject><subject>Computational intelligence</subject><subject>Courseware</subject><subject>Education</subject><subject>Informatics</subject><subject>Intelligent systems</subject><subject>Laboratories</subject><subject>Learning systems</subject><issn>2161-3761</issn><issn>2161-377X</issn><isbn>9780769526324</isbn><isbn>0769526322</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j91KAzEUhIM_YKn7AnqzL7A1ycnmJFdSitbCgoJ74V3ZJmdLZBvLJgp9e6sW52ZgPhhmGLsRfCYEt3erxbxpZ5JzPRO6lmD0GZtIoUUFiG_nrLBoOGpbSw1SXfwzLa5YkdI7PwosoIEJu5_7bp_DF5WrmPL46XL4iN1QvgxdjCFuyxCPJNMwhC3FXDbUjb_56yFl2qVrdtl3Q6Li5FPWPj60i6eqeV7-7KyC5bnyRvSWNgJ7v-GCSPbeqN4pBNBWecexNgo8eUXOIweHxiMJrdGRMLqGKbv9qw1EtN6PYdeNh_XpPXwD1jBMsA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Seridi, H.</creator><creator>Sari, T.</creator><creator>Khadir, T.</creator><creator>Sellami, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Adaptive Instructional Planning in Intelligent Learning Systems</title><author>Seridi, H. ; Sari, T. ; Khadir, T. ; Sellami, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d81f9eb17fdb01ee2fd84fc4733694dc075843ded4ecd703c78d7e1667ce18653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Competitive intelligence</topic><topic>Computational intelligence</topic><topic>Courseware</topic><topic>Education</topic><topic>Informatics</topic><topic>Intelligent systems</topic><topic>Laboratories</topic><topic>Learning systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Seridi, H.</creatorcontrib><creatorcontrib>Sari, T.</creatorcontrib><creatorcontrib>Khadir, T.</creatorcontrib><creatorcontrib>Sellami, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seridi, H.</au><au>Sari, T.</au><au>Khadir, T.</au><au>Sellami, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Instructional Planning in Intelligent Learning Systems</atitle><btitle>Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06)</btitle><stitle>ICALT</stitle><date>2006</date><risdate>2006</risdate><spage>133</spage><epage>135</epage><pages>133-135</pages><issn>2161-3761</issn><eissn>2161-377X</eissn><isbn>9780769526324</isbn><isbn>0769526322</isbn><abstract>Traditional hypermedia techniques add a new dimension to reading, but do not enable precise pedagogical strategies to be followed during the composition of an adaptive course. This paper investigates the use of computational intelligence for adaptive lesson generation in a distance learning environment. The predetermination of a set of selection rules based on the assessment results of the learner can increase the system adaptation and affects even more the relevance of the approach. Nevertheless, only the expert tutor is entitled to formulate with certainty a correspondence between learner's profile and the characteristics of learning objects. A methodology is introduced then for producing a decision model that imitated the way decided by the designer. An intelligent mechanism based on a non-symbolic approach system is used for an adaptation of the teaching contents to the learners' performances</abstract><pub>IEEE</pub><doi>10.1109/ICALT.2006.1652386</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-3761 |
ispartof | Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06), 2006, p.133-135 |
issn | 2161-3761 2161-377X |
language | eng |
recordid | cdi_ieee_primary_1652386 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive systems Artificial neural networks Competitive intelligence Computational intelligence Courseware Education Informatics Intelligent systems Laboratories Learning systems |
title | Adaptive Instructional Planning in Intelligent Learning Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Instructional%20Planning%20in%20Intelligent%20Learning%20Systems&rft.btitle=Sixth%20IEEE%20International%20Conference%20on%20Advanced%20Learning%20Technologies%20(ICALT'06)&rft.au=Seridi,%20H.&rft.date=2006&rft.spage=133&rft.epage=135&rft.pages=133-135&rft.issn=2161-3761&rft.eissn=2161-377X&rft.isbn=9780769526324&rft.isbn_list=0769526322&rft_id=info:doi/10.1109/ICALT.2006.1652386&rft_dat=%3Cieee_6IE%3E1652386%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1652386&rfr_iscdi=true |