Incorporating Gene Ontology in Clustering Gene Expression Data
In this paper we consider a general framework for clustering expression data that permits integration of various biological data sources through combination of corresponding dissimilarity measures. In the paper we briefly review currently published attempts to genomic data fusion and discuss a probl...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 563 |
---|---|
container_issue | |
container_start_page | 555 |
container_title | |
container_volume | |
creator | Kustra, R. Zagdanski, A. |
description | In this paper we consider a general framework for clustering expression data that permits integration of various biological data sources through combination of corresponding dissimilarity measures. In the paper we briefly review currently published attempts to genomic data fusion and discuss a problem of validating results from clustering expression data. We apply our approach to a real microarray expression dataset which induces a correlation-based dissimilarity matrix, and use gene ontology - biological process annotations to derive GO-based dissimilarity matrix. The proposed procedure is verified using a simple knowledge-based validation measure based on protein-protein interaction database. Obtained results reveal that combining experimental data with comprehensive and reliable biological repository may improve performance of cluster analysis and yield biologically meaningful gene clusters |
doi_str_mv | 10.1109/CBMS.2006.100 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1647629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1647629</ieee_id><sourcerecordid>1647629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-8d04fd962eb6926f9a683742c9b002561fba3f267187c94767db6c9b4cdf06c63</originalsourceid><addsrcrecordid>eNo9jEFLwzAYQAMqOOeOnrz0D7R-X5J-aS6C1jkHkx3U80jTZFRqWpIK7t9voHh6h_d4jN0gFIig7-rH17eCA1CBAGdsoVUFinTJS1TynM0QSOQKeXnJrlL6BACpUMzY_TrYIY5DNFMX9tnKBZdtwzT0w_6QdSGr--80ufjvlj9jdCl1Q8iezGSu2YU3fXKLP87Zx_PyvX7JN9vVun7Y5JajnvKqBelbTdw1pDl5bagSSnKrGwBeEvrGCM9JYaWslopU29BJStt6IEtizm5_v51zbjfG7svEww7plHItjiWvR30</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Incorporating Gene Ontology in Clustering Gene Expression Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kustra, R. ; Zagdanski, A.</creator><creatorcontrib>Kustra, R. ; Zagdanski, A.</creatorcontrib><description>In this paper we consider a general framework for clustering expression data that permits integration of various biological data sources through combination of corresponding dissimilarity measures. In the paper we briefly review currently published attempts to genomic data fusion and discuss a problem of validating results from clustering expression data. We apply our approach to a real microarray expression dataset which induces a correlation-based dissimilarity matrix, and use gene ontology - biological process annotations to derive GO-based dissimilarity matrix. The proposed procedure is verified using a simple knowledge-based validation measure based on protein-protein interaction database. Obtained results reveal that combining experimental data with comprehensive and reliable biological repository may improve performance of cluster analysis and yield biologically meaningful gene clusters</description><identifier>ISSN: 1063-7125</identifier><identifier>ISBN: 9780769525174</identifier><identifier>ISBN: 0769525172</identifier><identifier>DOI: 10.1109/CBMS.2006.100</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Clustering algorithms ; Clustering methods ; Gene expression ; Genomics ; Mathematics ; Ontologies ; Performance analysis ; Proteins ; Public healthcare</subject><ispartof>19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06), 2006, p.555-563</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-8d04fd962eb6926f9a683742c9b002561fba3f267187c94767db6c9b4cdf06c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1647629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1647629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kustra, R.</creatorcontrib><creatorcontrib>Zagdanski, A.</creatorcontrib><title>Incorporating Gene Ontology in Clustering Gene Expression Data</title><title>19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)</title><addtitle>CBMS</addtitle><description>In this paper we consider a general framework for clustering expression data that permits integration of various biological data sources through combination of corresponding dissimilarity measures. In the paper we briefly review currently published attempts to genomic data fusion and discuss a problem of validating results from clustering expression data. We apply our approach to a real microarray expression dataset which induces a correlation-based dissimilarity matrix, and use gene ontology - biological process annotations to derive GO-based dissimilarity matrix. The proposed procedure is verified using a simple knowledge-based validation measure based on protein-protein interaction database. Obtained results reveal that combining experimental data with comprehensive and reliable biological repository may improve performance of cluster analysis and yield biologically meaningful gene clusters</description><subject>Bioinformatics</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Gene expression</subject><subject>Genomics</subject><subject>Mathematics</subject><subject>Ontologies</subject><subject>Performance analysis</subject><subject>Proteins</subject><subject>Public healthcare</subject><issn>1063-7125</issn><isbn>9780769525174</isbn><isbn>0769525172</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jEFLwzAYQAMqOOeOnrz0D7R-X5J-aS6C1jkHkx3U80jTZFRqWpIK7t9voHh6h_d4jN0gFIig7-rH17eCA1CBAGdsoVUFinTJS1TynM0QSOQKeXnJrlL6BACpUMzY_TrYIY5DNFMX9tnKBZdtwzT0w_6QdSGr--80ufjvlj9jdCl1Q8iezGSu2YU3fXKLP87Zx_PyvX7JN9vVun7Y5JajnvKqBelbTdw1pDl5bagSSnKrGwBeEvrGCM9JYaWslopU29BJStt6IEtizm5_v51zbjfG7svEww7plHItjiWvR30</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kustra, R.</creator><creator>Zagdanski, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Incorporating Gene Ontology in Clustering Gene Expression Data</title><author>Kustra, R. ; Zagdanski, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-8d04fd962eb6926f9a683742c9b002561fba3f267187c94767db6c9b4cdf06c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bioinformatics</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Gene expression</topic><topic>Genomics</topic><topic>Mathematics</topic><topic>Ontologies</topic><topic>Performance analysis</topic><topic>Proteins</topic><topic>Public healthcare</topic><toplevel>online_resources</toplevel><creatorcontrib>Kustra, R.</creatorcontrib><creatorcontrib>Zagdanski, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kustra, R.</au><au>Zagdanski, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Incorporating Gene Ontology in Clustering Gene Expression Data</atitle><btitle>19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)</btitle><stitle>CBMS</stitle><date>2006</date><risdate>2006</risdate><spage>555</spage><epage>563</epage><pages>555-563</pages><issn>1063-7125</issn><isbn>9780769525174</isbn><isbn>0769525172</isbn><abstract>In this paper we consider a general framework for clustering expression data that permits integration of various biological data sources through combination of corresponding dissimilarity measures. In the paper we briefly review currently published attempts to genomic data fusion and discuss a problem of validating results from clustering expression data. We apply our approach to a real microarray expression dataset which induces a correlation-based dissimilarity matrix, and use gene ontology - biological process annotations to derive GO-based dissimilarity matrix. The proposed procedure is verified using a simple knowledge-based validation measure based on protein-protein interaction database. Obtained results reveal that combining experimental data with comprehensive and reliable biological repository may improve performance of cluster analysis and yield biologically meaningful gene clusters</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2006.100</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-7125 |
ispartof | 19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06), 2006, p.555-563 |
issn | 1063-7125 |
language | eng |
recordid | cdi_ieee_primary_1647629 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bioinformatics Clustering algorithms Clustering methods Gene expression Genomics Mathematics Ontologies Performance analysis Proteins Public healthcare |
title | Incorporating Gene Ontology in Clustering Gene Expression Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Incorporating%20Gene%20Ontology%20in%20Clustering%20Gene%20Expression%20Data&rft.btitle=19th%20IEEE%20Symposium%20on%20Computer-Based%20Medical%20Systems%20(CBMS'06)&rft.au=Kustra,%20R.&rft.date=2006&rft.spage=555&rft.epage=563&rft.pages=555-563&rft.issn=1063-7125&rft.isbn=9780769525174&rft.isbn_list=0769525172&rft_id=info:doi/10.1109/CBMS.2006.100&rft_dat=%3Cieee_6IE%3E1647629%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1647629&rfr_iscdi=true |