Incorporating Gene Ontology in Clustering Gene Expression Data

In this paper we consider a general framework for clustering expression data that permits integration of various biological data sources through combination of corresponding dissimilarity measures. In the paper we briefly review currently published attempts to genomic data fusion and discuss a probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kustra, R., Zagdanski, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 563
container_issue
container_start_page 555
container_title
container_volume
creator Kustra, R.
Zagdanski, A.
description In this paper we consider a general framework for clustering expression data that permits integration of various biological data sources through combination of corresponding dissimilarity measures. In the paper we briefly review currently published attempts to genomic data fusion and discuss a problem of validating results from clustering expression data. We apply our approach to a real microarray expression dataset which induces a correlation-based dissimilarity matrix, and use gene ontology - biological process annotations to derive GO-based dissimilarity matrix. The proposed procedure is verified using a simple knowledge-based validation measure based on protein-protein interaction database. Obtained results reveal that combining experimental data with comprehensive and reliable biological repository may improve performance of cluster analysis and yield biologically meaningful gene clusters
doi_str_mv 10.1109/CBMS.2006.100
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1647629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1647629</ieee_id><sourcerecordid>1647629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-8d04fd962eb6926f9a683742c9b002561fba3f267187c94767db6c9b4cdf06c63</originalsourceid><addsrcrecordid>eNo9jEFLwzAYQAMqOOeOnrz0D7R-X5J-aS6C1jkHkx3U80jTZFRqWpIK7t9voHh6h_d4jN0gFIig7-rH17eCA1CBAGdsoVUFinTJS1TynM0QSOQKeXnJrlL6BACpUMzY_TrYIY5DNFMX9tnKBZdtwzT0w_6QdSGr--80ufjvlj9jdCl1Q8iezGSu2YU3fXKLP87Zx_PyvX7JN9vVun7Y5JajnvKqBelbTdw1pDl5bagSSnKrGwBeEvrGCM9JYaWslopU29BJStt6IEtizm5_v51zbjfG7svEww7plHItjiWvR30</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Incorporating Gene Ontology in Clustering Gene Expression Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kustra, R. ; Zagdanski, A.</creator><creatorcontrib>Kustra, R. ; Zagdanski, A.</creatorcontrib><description>In this paper we consider a general framework for clustering expression data that permits integration of various biological data sources through combination of corresponding dissimilarity measures. In the paper we briefly review currently published attempts to genomic data fusion and discuss a problem of validating results from clustering expression data. We apply our approach to a real microarray expression dataset which induces a correlation-based dissimilarity matrix, and use gene ontology - biological process annotations to derive GO-based dissimilarity matrix. The proposed procedure is verified using a simple knowledge-based validation measure based on protein-protein interaction database. Obtained results reveal that combining experimental data with comprehensive and reliable biological repository may improve performance of cluster analysis and yield biologically meaningful gene clusters</description><identifier>ISSN: 1063-7125</identifier><identifier>ISBN: 9780769525174</identifier><identifier>ISBN: 0769525172</identifier><identifier>DOI: 10.1109/CBMS.2006.100</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Clustering algorithms ; Clustering methods ; Gene expression ; Genomics ; Mathematics ; Ontologies ; Performance analysis ; Proteins ; Public healthcare</subject><ispartof>19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06), 2006, p.555-563</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-8d04fd962eb6926f9a683742c9b002561fba3f267187c94767db6c9b4cdf06c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1647629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1647629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kustra, R.</creatorcontrib><creatorcontrib>Zagdanski, A.</creatorcontrib><title>Incorporating Gene Ontology in Clustering Gene Expression Data</title><title>19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)</title><addtitle>CBMS</addtitle><description>In this paper we consider a general framework for clustering expression data that permits integration of various biological data sources through combination of corresponding dissimilarity measures. In the paper we briefly review currently published attempts to genomic data fusion and discuss a problem of validating results from clustering expression data. We apply our approach to a real microarray expression dataset which induces a correlation-based dissimilarity matrix, and use gene ontology - biological process annotations to derive GO-based dissimilarity matrix. The proposed procedure is verified using a simple knowledge-based validation measure based on protein-protein interaction database. Obtained results reveal that combining experimental data with comprehensive and reliable biological repository may improve performance of cluster analysis and yield biologically meaningful gene clusters</description><subject>Bioinformatics</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Gene expression</subject><subject>Genomics</subject><subject>Mathematics</subject><subject>Ontologies</subject><subject>Performance analysis</subject><subject>Proteins</subject><subject>Public healthcare</subject><issn>1063-7125</issn><isbn>9780769525174</isbn><isbn>0769525172</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jEFLwzAYQAMqOOeOnrz0D7R-X5J-aS6C1jkHkx3U80jTZFRqWpIK7t9voHh6h_d4jN0gFIig7-rH17eCA1CBAGdsoVUFinTJS1TynM0QSOQKeXnJrlL6BACpUMzY_TrYIY5DNFMX9tnKBZdtwzT0w_6QdSGr--80ufjvlj9jdCl1Q8iezGSu2YU3fXKLP87Zx_PyvX7JN9vVun7Y5JajnvKqBelbTdw1pDl5bagSSnKrGwBeEvrGCM9JYaWslopU29BJStt6IEtizm5_v51zbjfG7svEww7plHItjiWvR30</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kustra, R.</creator><creator>Zagdanski, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Incorporating Gene Ontology in Clustering Gene Expression Data</title><author>Kustra, R. ; Zagdanski, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-8d04fd962eb6926f9a683742c9b002561fba3f267187c94767db6c9b4cdf06c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bioinformatics</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Gene expression</topic><topic>Genomics</topic><topic>Mathematics</topic><topic>Ontologies</topic><topic>Performance analysis</topic><topic>Proteins</topic><topic>Public healthcare</topic><toplevel>online_resources</toplevel><creatorcontrib>Kustra, R.</creatorcontrib><creatorcontrib>Zagdanski, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kustra, R.</au><au>Zagdanski, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Incorporating Gene Ontology in Clustering Gene Expression Data</atitle><btitle>19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)</btitle><stitle>CBMS</stitle><date>2006</date><risdate>2006</risdate><spage>555</spage><epage>563</epage><pages>555-563</pages><issn>1063-7125</issn><isbn>9780769525174</isbn><isbn>0769525172</isbn><abstract>In this paper we consider a general framework for clustering expression data that permits integration of various biological data sources through combination of corresponding dissimilarity measures. In the paper we briefly review currently published attempts to genomic data fusion and discuss a problem of validating results from clustering expression data. We apply our approach to a real microarray expression dataset which induces a correlation-based dissimilarity matrix, and use gene ontology - biological process annotations to derive GO-based dissimilarity matrix. The proposed procedure is verified using a simple knowledge-based validation measure based on protein-protein interaction database. Obtained results reveal that combining experimental data with comprehensive and reliable biological repository may improve performance of cluster analysis and yield biologically meaningful gene clusters</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2006.100</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-7125
ispartof 19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06), 2006, p.555-563
issn 1063-7125
language eng
recordid cdi_ieee_primary_1647629
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
Clustering algorithms
Clustering methods
Gene expression
Genomics
Mathematics
Ontologies
Performance analysis
Proteins
Public healthcare
title Incorporating Gene Ontology in Clustering Gene Expression Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Incorporating%20Gene%20Ontology%20in%20Clustering%20Gene%20Expression%20Data&rft.btitle=19th%20IEEE%20Symposium%20on%20Computer-Based%20Medical%20Systems%20(CBMS'06)&rft.au=Kustra,%20R.&rft.date=2006&rft.spage=555&rft.epage=563&rft.pages=555-563&rft.issn=1063-7125&rft.isbn=9780769525174&rft.isbn_list=0769525172&rft_id=info:doi/10.1109/CBMS.2006.100&rft_dat=%3Cieee_6IE%3E1647629%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1647629&rfr_iscdi=true