Embedded thermoelectric coolers for semiconductor hot spot cooling

Advanced semiconductors continue to increase performance by increasing functional integration and clock speed. Not only is the total power consumption increasing, the power distribution is highly non-uniform over the die area. Continued reduction in design rules are likely to increase the non-unifor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koester, D., Venkatasubramanian, R., Conner, B., Snyder, G.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 496
container_issue
container_start_page 491
container_title
container_volume
creator Koester, D.
Venkatasubramanian, R.
Conner, B.
Snyder, G.J.
description Advanced semiconductors continue to increase performance by increasing functional integration and clock speed. Not only is the total power consumption increasing, the power distribution is highly non-uniform over the die area. Continued reduction in design rules are likely to increase the non-uniformity of the power density as high-speed circuits that dissipate a large amount of power but consume a small amount of die area are surrounded by lower-speed circuits that dissipate little power but consume a larger die area. The high temperature of localized hot spots adversely affects product reliability, performance and yield. A promising approach for site-specific cooling of hot spots is use of an embedded thermoelectric cooler (eTEC). The thickness of superlattice thermoelectric material is typically less than 20 mum, which provides very high heat flux (>300 W/cm 2 ). The eTEC can be unobtrusively integrated in the package between the die and heat spreader. On-demand, site-specific cooling and the high coefficient-of-performance (COP) of the eTEC minimize the active power required for cooling hot spots
doi_str_mv 10.1109/ITHERM.2006.1645384
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1645384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1645384</ieee_id><sourcerecordid>1645384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-7198801fb1a7f8081f09b27691fa4bd920c9b4c26882cae8f8ceb23fc48a1cdb3</originalsourceid><addsrcrecordid>eNotj81OwzAQhC1-JErpE_SSF0jYdRx7fYQqtJWKkFA5V7GzpkFJXSXhwNsTRC8zGunTaEaIJUKGCPZxu9-U76-ZBNAZalXkpK7ETBbGpGCsvRb3YAhyW0hlbsQMgUxqycCdWAzDFwCg1Ra1nonnsnNc11wn45H7LnLLfuwbn_gYW-6HJMQ-GbhrfDzV336c0jGOyXCe5A9pTp8P4jZU7cCLi8_Fx0u5X23S3dt6u3rapR4VjKlBSwQYHFYmEBAGsE6aaUeolKutBG-d8lITSV8xBfLsZB68ogp97fK5WP73Nsx8OPdNV_U_h8v9_BfM5k3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Embedded thermoelectric coolers for semiconductor hot spot cooling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Koester, D. ; Venkatasubramanian, R. ; Conner, B. ; Snyder, G.J.</creator><creatorcontrib>Koester, D. ; Venkatasubramanian, R. ; Conner, B. ; Snyder, G.J.</creatorcontrib><description>Advanced semiconductors continue to increase performance by increasing functional integration and clock speed. Not only is the total power consumption increasing, the power distribution is highly non-uniform over the die area. Continued reduction in design rules are likely to increase the non-uniformity of the power density as high-speed circuits that dissipate a large amount of power but consume a small amount of die area are surrounded by lower-speed circuits that dissipate little power but consume a larger die area. The high temperature of localized hot spots adversely affects product reliability, performance and yield. A promising approach for site-specific cooling of hot spots is use of an embedded thermoelectric cooler (eTEC). The thickness of superlattice thermoelectric material is typically less than 20 mum, which provides very high heat flux (&gt;300 W/cm 2 ). The eTEC can be unobtrusively integrated in the package between the die and heat spreader. On-demand, site-specific cooling and the high coefficient-of-performance (COP) of the eTEC minimize the active power required for cooling hot spots</description><identifier>ISSN: 1087-9870</identifier><identifier>ISBN: 0780395247</identifier><identifier>ISBN: 9780780395244</identifier><identifier>EISSN: 2577-0799</identifier><identifier>DOI: 10.1109/ITHERM.2006.1645384</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; Clocks ; Cooling ; Energy consumption ; Energy management ; Subthreshold current ; Temperature dependence ; Thermal management ; Thermoelectricity ; Threshold voltage</subject><ispartof>Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006, 2006, p.491-496</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-7198801fb1a7f8081f09b27691fa4bd920c9b4c26882cae8f8ceb23fc48a1cdb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1645384$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1645384$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koester, D.</creatorcontrib><creatorcontrib>Venkatasubramanian, R.</creatorcontrib><creatorcontrib>Conner, B.</creatorcontrib><creatorcontrib>Snyder, G.J.</creatorcontrib><title>Embedded thermoelectric coolers for semiconductor hot spot cooling</title><title>Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006</title><addtitle>ITHERM</addtitle><description>Advanced semiconductors continue to increase performance by increasing functional integration and clock speed. Not only is the total power consumption increasing, the power distribution is highly non-uniform over the die area. Continued reduction in design rules are likely to increase the non-uniformity of the power density as high-speed circuits that dissipate a large amount of power but consume a small amount of die area are surrounded by lower-speed circuits that dissipate little power but consume a larger die area. The high temperature of localized hot spots adversely affects product reliability, performance and yield. A promising approach for site-specific cooling of hot spots is use of an embedded thermoelectric cooler (eTEC). The thickness of superlattice thermoelectric material is typically less than 20 mum, which provides very high heat flux (&gt;300 W/cm 2 ). The eTEC can be unobtrusively integrated in the package between the die and heat spreader. On-demand, site-specific cooling and the high coefficient-of-performance (COP) of the eTEC minimize the active power required for cooling hot spots</description><subject>Circuits</subject><subject>Clocks</subject><subject>Cooling</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Subthreshold current</subject><subject>Temperature dependence</subject><subject>Thermal management</subject><subject>Thermoelectricity</subject><subject>Threshold voltage</subject><issn>1087-9870</issn><issn>2577-0799</issn><isbn>0780395247</isbn><isbn>9780780395244</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81OwzAQhC1-JErpE_SSF0jYdRx7fYQqtJWKkFA5V7GzpkFJXSXhwNsTRC8zGunTaEaIJUKGCPZxu9-U76-ZBNAZalXkpK7ETBbGpGCsvRb3YAhyW0hlbsQMgUxqycCdWAzDFwCg1Ra1nonnsnNc11wn45H7LnLLfuwbn_gYW-6HJMQ-GbhrfDzV336c0jGOyXCe5A9pTp8P4jZU7cCLi8_Fx0u5X23S3dt6u3rapR4VjKlBSwQYHFYmEBAGsE6aaUeolKutBG-d8lITSV8xBfLsZB68ogp97fK5WP73Nsx8OPdNV_U_h8v9_BfM5k3g</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Koester, D.</creator><creator>Venkatasubramanian, R.</creator><creator>Conner, B.</creator><creator>Snyder, G.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Embedded thermoelectric coolers for semiconductor hot spot cooling</title><author>Koester, D. ; Venkatasubramanian, R. ; Conner, B. ; Snyder, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-7198801fb1a7f8081f09b27691fa4bd920c9b4c26882cae8f8ceb23fc48a1cdb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Circuits</topic><topic>Clocks</topic><topic>Cooling</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Subthreshold current</topic><topic>Temperature dependence</topic><topic>Thermal management</topic><topic>Thermoelectricity</topic><topic>Threshold voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Koester, D.</creatorcontrib><creatorcontrib>Venkatasubramanian, R.</creatorcontrib><creatorcontrib>Conner, B.</creatorcontrib><creatorcontrib>Snyder, G.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koester, D.</au><au>Venkatasubramanian, R.</au><au>Conner, B.</au><au>Snyder, G.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Embedded thermoelectric coolers for semiconductor hot spot cooling</atitle><btitle>Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006</btitle><stitle>ITHERM</stitle><date>2006</date><risdate>2006</risdate><spage>491</spage><epage>496</epage><pages>491-496</pages><issn>1087-9870</issn><eissn>2577-0799</eissn><isbn>0780395247</isbn><isbn>9780780395244</isbn><abstract>Advanced semiconductors continue to increase performance by increasing functional integration and clock speed. Not only is the total power consumption increasing, the power distribution is highly non-uniform over the die area. Continued reduction in design rules are likely to increase the non-uniformity of the power density as high-speed circuits that dissipate a large amount of power but consume a small amount of die area are surrounded by lower-speed circuits that dissipate little power but consume a larger die area. The high temperature of localized hot spots adversely affects product reliability, performance and yield. A promising approach for site-specific cooling of hot spots is use of an embedded thermoelectric cooler (eTEC). The thickness of superlattice thermoelectric material is typically less than 20 mum, which provides very high heat flux (&gt;300 W/cm 2 ). The eTEC can be unobtrusively integrated in the package between the die and heat spreader. On-demand, site-specific cooling and the high coefficient-of-performance (COP) of the eTEC minimize the active power required for cooling hot spots</abstract><pub>IEEE</pub><doi>10.1109/ITHERM.2006.1645384</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1087-9870
ispartof Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006, 2006, p.491-496
issn 1087-9870
2577-0799
language eng
recordid cdi_ieee_primary_1645384
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuits
Clocks
Cooling
Energy consumption
Energy management
Subthreshold current
Temperature dependence
Thermal management
Thermoelectricity
Threshold voltage
title Embedded thermoelectric coolers for semiconductor hot spot cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Embedded%20thermoelectric%20coolers%20for%20semiconductor%20hot%20spot%20cooling&rft.btitle=Thermal%20and%20Thermomechanical%20Proceedings%2010th%20Intersociety%20Conference%20on%20Phenomena%20in%20Electronics%20Systems,%202006.%20ITHERM%202006&rft.au=Koester,%20D.&rft.date=2006&rft.spage=491&rft.epage=496&rft.pages=491-496&rft.issn=1087-9870&rft.eissn=2577-0799&rft.isbn=0780395247&rft.isbn_list=9780780395244&rft_id=info:doi/10.1109/ITHERM.2006.1645384&rft_dat=%3Cieee_6IE%3E1645384%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1645384&rfr_iscdi=true