Singular curves and cusp points in the joint space of 3-RPR parallel manipulators
This paper investigates the singular curves in two-dimensional slices of the joint space of a family of planar parallel manipulators. It focuses on special points, referred to as cusp points, which may appear on these curves. Cusp points play an important role in the kinematic behavior of parallel m...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 782 |
---|---|
container_issue | |
container_start_page | 777 |
container_title | |
container_volume | |
creator | Zein, M. Wenger, P. Chablat, D. |
description | This paper investigates the singular curves in two-dimensional slices of the joint space of a family of planar parallel manipulators. It focuses on special points, referred to as cusp points, which may appear on these curves. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a nonsingular change of assembly mode. The purpose of this study is twofold. First, it reviews an important previous work, which, to the authors' knowledge, has never been exploited yet. Second, it determines the cusp points in any two-dimensional slice of the joint space. First results show that the number of cusp points may vary from zero to eight. This work finds applications in both design and trajectory planning |
doi_str_mv | 10.1109/ROBOT.2006.1641804 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1641804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1641804</ieee_id><sourcerecordid>1641804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-2ee4dc48f5db97af8e0ea61611bd0700a2e748fcbdae6a40912c84c5afbb4f953</originalsourceid><addsrcrecordid>eNotkM1Kw0AUhQd_wLb6ArqZF0i8M5nMTJZarAqFaKzgrtxMbjQlTYZMKvj2RuzqO4cD3-Iwdi0gFgKy2yK_zzexBNCx0EpYUCdsJlNjIrDm45TNwVhIshRSOGMzMSFSRmYXbB7CDgCSROsZe31rus9DiwN3h-GbAseummLw3PdNNwbedHz8Ir77azx4dMT7midR8VJwjwO2LbV8j13jJ8vYD-GSndfYBro6csHeVw-b5VO0zh-fl3fryEltx0gSqcopW6dVmRmsLQGhFlqIsgIDgJLMtLqyQtKoIBPSWeVSrMtS1VmaLNjNv7choq0fmj0OP9vjFckvvedSAQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Singular curves and cusp points in the joint space of 3-RPR parallel manipulators</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zein, M. ; Wenger, P. ; Chablat, D.</creator><creatorcontrib>Zein, M. ; Wenger, P. ; Chablat, D.</creatorcontrib><description>This paper investigates the singular curves in two-dimensional slices of the joint space of a family of planar parallel manipulators. It focuses on special points, referred to as cusp points, which may appear on these curves. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a nonsingular change of assembly mode. The purpose of this study is twofold. First, it reviews an important previous work, which, to the authors' knowledge, has never been exploited yet. Second, it determines the cusp points in any two-dimensional slice of the joint space. First results show that the number of cusp points may vary from zero to eight. This work finds applications in both design and trajectory planning</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 0780395050</identifier><identifier>ISBN: 9780780395053</identifier><identifier>EISSN: 2577-087X</identifier><identifier>DOI: 10.1109/ROBOT.2006.1641804</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Jacobian matrices ; Leg ; Manipulators ; Robotics and automation ; Writing</subject><ispartof>Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, 2006, p.777-782</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-2ee4dc48f5db97af8e0ea61611bd0700a2e748fcbdae6a40912c84c5afbb4f953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1641804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1641804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zein, M.</creatorcontrib><creatorcontrib>Wenger, P.</creatorcontrib><creatorcontrib>Chablat, D.</creatorcontrib><title>Singular curves and cusp points in the joint space of 3-RPR parallel manipulators</title><title>Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006</title><addtitle>ROBOT</addtitle><description>This paper investigates the singular curves in two-dimensional slices of the joint space of a family of planar parallel manipulators. It focuses on special points, referred to as cusp points, which may appear on these curves. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a nonsingular change of assembly mode. The purpose of this study is twofold. First, it reviews an important previous work, which, to the authors' knowledge, has never been exploited yet. Second, it determines the cusp points in any two-dimensional slice of the joint space. First results show that the number of cusp points may vary from zero to eight. This work finds applications in both design and trajectory planning</description><subject>Equations</subject><subject>Jacobian matrices</subject><subject>Leg</subject><subject>Manipulators</subject><subject>Robotics and automation</subject><subject>Writing</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>0780395050</isbn><isbn>9780780395053</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1Kw0AUhQd_wLb6ArqZF0i8M5nMTJZarAqFaKzgrtxMbjQlTYZMKvj2RuzqO4cD3-Iwdi0gFgKy2yK_zzexBNCx0EpYUCdsJlNjIrDm45TNwVhIshRSOGMzMSFSRmYXbB7CDgCSROsZe31rus9DiwN3h-GbAseummLw3PdNNwbedHz8Ir77azx4dMT7midR8VJwjwO2LbV8j13jJ8vYD-GSndfYBro6csHeVw-b5VO0zh-fl3fryEltx0gSqcopW6dVmRmsLQGhFlqIsgIDgJLMtLqyQtKoIBPSWeVSrMtS1VmaLNjNv7choq0fmj0OP9vjFckvvedSAQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Zein, M.</creator><creator>Wenger, P.</creator><creator>Chablat, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Singular curves and cusp points in the joint space of 3-RPR parallel manipulators</title><author>Zein, M. ; Wenger, P. ; Chablat, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-2ee4dc48f5db97af8e0ea61611bd0700a2e748fcbdae6a40912c84c5afbb4f953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Equations</topic><topic>Jacobian matrices</topic><topic>Leg</topic><topic>Manipulators</topic><topic>Robotics and automation</topic><topic>Writing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zein, M.</creatorcontrib><creatorcontrib>Wenger, P.</creatorcontrib><creatorcontrib>Chablat, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zein, M.</au><au>Wenger, P.</au><au>Chablat, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Singular curves and cusp points in the joint space of 3-RPR parallel manipulators</atitle><btitle>Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006</btitle><stitle>ROBOT</stitle><date>2006</date><risdate>2006</risdate><spage>777</spage><epage>782</epage><pages>777-782</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>0780395050</isbn><isbn>9780780395053</isbn><abstract>This paper investigates the singular curves in two-dimensional slices of the joint space of a family of planar parallel manipulators. It focuses on special points, referred to as cusp points, which may appear on these curves. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a nonsingular change of assembly mode. The purpose of this study is twofold. First, it reviews an important previous work, which, to the authors' knowledge, has never been exploited yet. Second, it determines the cusp points in any two-dimensional slice of the joint space. First results show that the number of cusp points may vary from zero to eight. This work finds applications in both design and trajectory planning</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2006.1641804</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, 2006, p.777-782 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_1641804 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Equations Jacobian matrices Leg Manipulators Robotics and automation Writing |
title | Singular curves and cusp points in the joint space of 3-RPR parallel manipulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Singular%20curves%20and%20cusp%20points%20in%20the%20joint%20space%20of%203-RPR%20parallel%20manipulators&rft.btitle=Proceedings%202006%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation,%202006.%20ICRA%202006&rft.au=Zein,%20M.&rft.date=2006&rft.spage=777&rft.epage=782&rft.pages=777-782&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=0780395050&rft.isbn_list=9780780395053&rft_id=info:doi/10.1109/ROBOT.2006.1641804&rft_dat=%3Cieee_6IE%3E1641804%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1641804&rfr_iscdi=true |