Singular curves and cusp points in the joint space of 3-RPR parallel manipulators

This paper investigates the singular curves in two-dimensional slices of the joint space of a family of planar parallel manipulators. It focuses on special points, referred to as cusp points, which may appear on these curves. Cusp points play an important role in the kinematic behavior of parallel m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zein, M., Wenger, P., Chablat, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 782
container_issue
container_start_page 777
container_title
container_volume
creator Zein, M.
Wenger, P.
Chablat, D.
description This paper investigates the singular curves in two-dimensional slices of the joint space of a family of planar parallel manipulators. It focuses on special points, referred to as cusp points, which may appear on these curves. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a nonsingular change of assembly mode. The purpose of this study is twofold. First, it reviews an important previous work, which, to the authors' knowledge, has never been exploited yet. Second, it determines the cusp points in any two-dimensional slice of the joint space. First results show that the number of cusp points may vary from zero to eight. This work finds applications in both design and trajectory planning
doi_str_mv 10.1109/ROBOT.2006.1641804
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1641804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1641804</ieee_id><sourcerecordid>1641804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-2ee4dc48f5db97af8e0ea61611bd0700a2e748fcbdae6a40912c84c5afbb4f953</originalsourceid><addsrcrecordid>eNotkM1Kw0AUhQd_wLb6ArqZF0i8M5nMTJZarAqFaKzgrtxMbjQlTYZMKvj2RuzqO4cD3-Iwdi0gFgKy2yK_zzexBNCx0EpYUCdsJlNjIrDm45TNwVhIshRSOGMzMSFSRmYXbB7CDgCSROsZe31rus9DiwN3h-GbAseummLw3PdNNwbedHz8Ir77azx4dMT7midR8VJwjwO2LbV8j13jJ8vYD-GSndfYBro6csHeVw-b5VO0zh-fl3fryEltx0gSqcopW6dVmRmsLQGhFlqIsgIDgJLMtLqyQtKoIBPSWeVSrMtS1VmaLNjNv7choq0fmj0OP9vjFckvvedSAQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Singular curves and cusp points in the joint space of 3-RPR parallel manipulators</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zein, M. ; Wenger, P. ; Chablat, D.</creator><creatorcontrib>Zein, M. ; Wenger, P. ; Chablat, D.</creatorcontrib><description>This paper investigates the singular curves in two-dimensional slices of the joint space of a family of planar parallel manipulators. It focuses on special points, referred to as cusp points, which may appear on these curves. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a nonsingular change of assembly mode. The purpose of this study is twofold. First, it reviews an important previous work, which, to the authors' knowledge, has never been exploited yet. Second, it determines the cusp points in any two-dimensional slice of the joint space. First results show that the number of cusp points may vary from zero to eight. This work finds applications in both design and trajectory planning</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 0780395050</identifier><identifier>ISBN: 9780780395053</identifier><identifier>EISSN: 2577-087X</identifier><identifier>DOI: 10.1109/ROBOT.2006.1641804</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Jacobian matrices ; Leg ; Manipulators ; Robotics and automation ; Writing</subject><ispartof>Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, 2006, p.777-782</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-2ee4dc48f5db97af8e0ea61611bd0700a2e748fcbdae6a40912c84c5afbb4f953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1641804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1641804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zein, M.</creatorcontrib><creatorcontrib>Wenger, P.</creatorcontrib><creatorcontrib>Chablat, D.</creatorcontrib><title>Singular curves and cusp points in the joint space of 3-RPR parallel manipulators</title><title>Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006</title><addtitle>ROBOT</addtitle><description>This paper investigates the singular curves in two-dimensional slices of the joint space of a family of planar parallel manipulators. It focuses on special points, referred to as cusp points, which may appear on these curves. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a nonsingular change of assembly mode. The purpose of this study is twofold. First, it reviews an important previous work, which, to the authors' knowledge, has never been exploited yet. Second, it determines the cusp points in any two-dimensional slice of the joint space. First results show that the number of cusp points may vary from zero to eight. This work finds applications in both design and trajectory planning</description><subject>Equations</subject><subject>Jacobian matrices</subject><subject>Leg</subject><subject>Manipulators</subject><subject>Robotics and automation</subject><subject>Writing</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>0780395050</isbn><isbn>9780780395053</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1Kw0AUhQd_wLb6ArqZF0i8M5nMTJZarAqFaKzgrtxMbjQlTYZMKvj2RuzqO4cD3-Iwdi0gFgKy2yK_zzexBNCx0EpYUCdsJlNjIrDm45TNwVhIshRSOGMzMSFSRmYXbB7CDgCSROsZe31rus9DiwN3h-GbAseummLw3PdNNwbedHz8Ir77azx4dMT7midR8VJwjwO2LbV8j13jJ8vYD-GSndfYBro6csHeVw-b5VO0zh-fl3fryEltx0gSqcopW6dVmRmsLQGhFlqIsgIDgJLMtLqyQtKoIBPSWeVSrMtS1VmaLNjNv7choq0fmj0OP9vjFckvvedSAQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Zein, M.</creator><creator>Wenger, P.</creator><creator>Chablat, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Singular curves and cusp points in the joint space of 3-RPR parallel manipulators</title><author>Zein, M. ; Wenger, P. ; Chablat, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-2ee4dc48f5db97af8e0ea61611bd0700a2e748fcbdae6a40912c84c5afbb4f953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Equations</topic><topic>Jacobian matrices</topic><topic>Leg</topic><topic>Manipulators</topic><topic>Robotics and automation</topic><topic>Writing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zein, M.</creatorcontrib><creatorcontrib>Wenger, P.</creatorcontrib><creatorcontrib>Chablat, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zein, M.</au><au>Wenger, P.</au><au>Chablat, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Singular curves and cusp points in the joint space of 3-RPR parallel manipulators</atitle><btitle>Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006</btitle><stitle>ROBOT</stitle><date>2006</date><risdate>2006</risdate><spage>777</spage><epage>782</epage><pages>777-782</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>0780395050</isbn><isbn>9780780395053</isbn><abstract>This paper investigates the singular curves in two-dimensional slices of the joint space of a family of planar parallel manipulators. It focuses on special points, referred to as cusp points, which may appear on these curves. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a nonsingular change of assembly mode. The purpose of this study is twofold. First, it reviews an important previous work, which, to the authors' knowledge, has never been exploited yet. Second, it determines the cusp points in any two-dimensional slice of the joint space. First results show that the number of cusp points may vary from zero to eight. This work finds applications in both design and trajectory planning</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2006.1641804</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, 2006, p.777-782
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_1641804
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Jacobian matrices
Leg
Manipulators
Robotics and automation
Writing
title Singular curves and cusp points in the joint space of 3-RPR parallel manipulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Singular%20curves%20and%20cusp%20points%20in%20the%20joint%20space%20of%203-RPR%20parallel%20manipulators&rft.btitle=Proceedings%202006%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation,%202006.%20ICRA%202006&rft.au=Zein,%20M.&rft.date=2006&rft.spage=777&rft.epage=782&rft.pages=777-782&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=0780395050&rft.isbn_list=9780780395053&rft_id=info:doi/10.1109/ROBOT.2006.1641804&rft_dat=%3Cieee_6IE%3E1641804%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1641804&rfr_iscdi=true