Multiple Fiducial Identification Using the Hidden Markov Model in Image Guided Radiosurgery

A multi-fiducial identification method for image guided radiotherapy and radiosurgery is presented. A modified hidden Markov model is adopted to incorporate context information. A novel algorithm, modified from the Viterbi algorithm, is introduced to identify fiducials concurrently in two orthogonal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhiping Mu, Dongshan Fu, Kuduvalli, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 92
container_title
container_volume
creator Zhiping Mu
Dongshan Fu
Kuduvalli, G.
description A multi-fiducial identification method for image guided radiotherapy and radiosurgery is presented. A modified hidden Markov model is adopted to incorporate context information. A novel algorithm, modified from the Viterbi algorithm, is introduced to identify fiducials concurrently in two orthogonal projections. This method is robust and efficient, requires a small number of control parameters, exhibits large search range, and can accommodate deformations. A simple implementation is presented as an example to verify the efficacy of the framework. Experiments were carried out using clinical images acquired during patient treatments, and very promising results were achieved and reported in the paper. The algorithm successfully identified fiducials even in very difficult cases, demonstrating the effectiveness and robustness of the proposed probabilistic framework and the concurrent search algorithm.
doi_str_mv 10.1109/CVPRW.2006.138
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1640533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1640533</ieee_id><sourcerecordid>1640533</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-72289d878d086de01d11a4de0ae0b7f63f5512296aa8394e19d9fdb355a41df63</originalsourceid><addsrcrecordid>eNo9zEtLAzEUhuHgBSy1Wzdu8gemnpNMMslSir1Ai1KqLlyUtOdMjU5nylwK_fcWFFffCw98QtwhDBHBP4zeXpbvQwVgh6jdhegptJBkBu2lGPjMQWa9UTa1ePVv4G7EoGm-AADBGeN1T3wsuqKNh4LlOFK3jaGQM-KyjXnchjZWpXxtYrmT7SfLaaQzyUWov6ujXFTEhYylnO3DjuWki8Qkl4Fi1XT1juvTrbjOQ9Hw4G_7YjV-Wo2myfx5Mhs9zpPooU0ypZwnlzkCZ4kBCTGk5wgMmyy3OjcGlfI2BKd9yujJ57TRxoQU6ex9cf97G5l5fajjPtSnNdoUjNb6B09cVK0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multiple Fiducial Identification Using the Hidden Markov Model in Image Guided Radiosurgery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhiping Mu ; Dongshan Fu ; Kuduvalli, G.</creator><creatorcontrib>Zhiping Mu ; Dongshan Fu ; Kuduvalli, G.</creatorcontrib><description>A multi-fiducial identification method for image guided radiotherapy and radiosurgery is presented. A modified hidden Markov model is adopted to incorporate context information. A novel algorithm, modified from the Viterbi algorithm, is introduced to identify fiducials concurrently in two orthogonal projections. This method is robust and efficient, requires a small number of control parameters, exhibits large search range, and can accommodate deformations. A simple implementation is presented as an example to verify the efficacy of the framework. Experiments were carried out using clinical images acquired during patient treatments, and very promising results were achieved and reported in the paper. The algorithm successfully identified fiducials even in very difficult cases, demonstrating the effectiveness and robustness of the proposed probabilistic framework and the concurrent search algorithm.</description><identifier>ISSN: 2160-7508</identifier><identifier>ISBN: 9780769526461</identifier><identifier>ISBN: 0769526462</identifier><identifier>EISSN: 2160-7516</identifier><identifier>DOI: 10.1109/CVPRW.2006.138</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computed tomography ; Feature extraction ; Hidden Markov models ; Lung neoplasms ; Magnetic resonance imaging ; Medical treatment ; Robust control ; Tracking ; Viterbi algorithm ; X-ray imaging</subject><ispartof>2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06), 2006, p.92-92</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1640533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1640533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhiping Mu</creatorcontrib><creatorcontrib>Dongshan Fu</creatorcontrib><creatorcontrib>Kuduvalli, G.</creatorcontrib><title>Multiple Fiducial Identification Using the Hidden Markov Model in Image Guided Radiosurgery</title><title>2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06)</title><addtitle>CVPRW</addtitle><description>A multi-fiducial identification method for image guided radiotherapy and radiosurgery is presented. A modified hidden Markov model is adopted to incorporate context information. A novel algorithm, modified from the Viterbi algorithm, is introduced to identify fiducials concurrently in two orthogonal projections. This method is robust and efficient, requires a small number of control parameters, exhibits large search range, and can accommodate deformations. A simple implementation is presented as an example to verify the efficacy of the framework. Experiments were carried out using clinical images acquired during patient treatments, and very promising results were achieved and reported in the paper. The algorithm successfully identified fiducials even in very difficult cases, demonstrating the effectiveness and robustness of the proposed probabilistic framework and the concurrent search algorithm.</description><subject>Computed tomography</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Lung neoplasms</subject><subject>Magnetic resonance imaging</subject><subject>Medical treatment</subject><subject>Robust control</subject><subject>Tracking</subject><subject>Viterbi algorithm</subject><subject>X-ray imaging</subject><issn>2160-7508</issn><issn>2160-7516</issn><isbn>9780769526461</isbn><isbn>0769526462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9zEtLAzEUhuHgBSy1Wzdu8gemnpNMMslSir1Ai1KqLlyUtOdMjU5nylwK_fcWFFffCw98QtwhDBHBP4zeXpbvQwVgh6jdhegptJBkBu2lGPjMQWa9UTa1ePVv4G7EoGm-AADBGeN1T3wsuqKNh4LlOFK3jaGQM-KyjXnchjZWpXxtYrmT7SfLaaQzyUWov6ujXFTEhYylnO3DjuWki8Qkl4Fi1XT1juvTrbjOQ9Hw4G_7YjV-Wo2myfx5Mhs9zpPooU0ypZwnlzkCZ4kBCTGk5wgMmyy3OjcGlfI2BKd9yujJ57TRxoQU6ex9cf97G5l5fajjPtSnNdoUjNb6B09cVK0</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Zhiping Mu</creator><creator>Dongshan Fu</creator><creator>Kuduvalli, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Multiple Fiducial Identification Using the Hidden Markov Model in Image Guided Radiosurgery</title><author>Zhiping Mu ; Dongshan Fu ; Kuduvalli, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-72289d878d086de01d11a4de0ae0b7f63f5512296aa8394e19d9fdb355a41df63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computed tomography</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Lung neoplasms</topic><topic>Magnetic resonance imaging</topic><topic>Medical treatment</topic><topic>Robust control</topic><topic>Tracking</topic><topic>Viterbi algorithm</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhiping Mu</creatorcontrib><creatorcontrib>Dongshan Fu</creatorcontrib><creatorcontrib>Kuduvalli, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhiping Mu</au><au>Dongshan Fu</au><au>Kuduvalli, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multiple Fiducial Identification Using the Hidden Markov Model in Image Guided Radiosurgery</atitle><btitle>2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06)</btitle><stitle>CVPRW</stitle><date>2006</date><risdate>2006</risdate><spage>92</spage><epage>92</epage><pages>92-92</pages><issn>2160-7508</issn><eissn>2160-7516</eissn><isbn>9780769526461</isbn><isbn>0769526462</isbn><abstract>A multi-fiducial identification method for image guided radiotherapy and radiosurgery is presented. A modified hidden Markov model is adopted to incorporate context information. A novel algorithm, modified from the Viterbi algorithm, is introduced to identify fiducials concurrently in two orthogonal projections. This method is robust and efficient, requires a small number of control parameters, exhibits large search range, and can accommodate deformations. A simple implementation is presented as an example to verify the efficacy of the framework. Experiments were carried out using clinical images acquired during patient treatments, and very promising results were achieved and reported in the paper. The algorithm successfully identified fiducials even in very difficult cases, demonstrating the effectiveness and robustness of the proposed probabilistic framework and the concurrent search algorithm.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2006.138</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-7508
ispartof 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06), 2006, p.92-92
issn 2160-7508
2160-7516
language eng
recordid cdi_ieee_primary_1640533
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computed tomography
Feature extraction
Hidden Markov models
Lung neoplasms
Magnetic resonance imaging
Medical treatment
Robust control
Tracking
Viterbi algorithm
X-ray imaging
title Multiple Fiducial Identification Using the Hidden Markov Model in Image Guided Radiosurgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multiple%20Fiducial%20Identification%20Using%20the%20Hidden%20Markov%20Model%20in%20Image%20Guided%20Radiosurgery&rft.btitle=2006%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshop%20(CVPRW'06)&rft.au=Zhiping%20Mu&rft.date=2006&rft.spage=92&rft.epage=92&rft.pages=92-92&rft.issn=2160-7508&rft.eissn=2160-7516&rft.isbn=9780769526461&rft.isbn_list=0769526462&rft_id=info:doi/10.1109/CVPRW.2006.138&rft_dat=%3Cieee_6IE%3E1640533%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1640533&rfr_iscdi=true