Edge-preserving image denoising and estimation of discontinuous surfaces

In this paper, we are interested in the problem of estimating a discontinuous surface from noisy data. A novel procedure for this problem is proposed based on local linear kernel smoothing, in which local neighborhoods are adapted to the local smoothness of the surface measured by the observed data....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2006-07, Vol.28 (7), p.1075-1087
Hauptverfasser: Gijbels, I., Lambert, A., Qiu, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1087
container_issue 7
container_start_page 1075
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 28
creator Gijbels, I.
Lambert, A.
Qiu, P.
description In this paper, we are interested in the problem of estimating a discontinuous surface from noisy data. A novel procedure for this problem is proposed based on local linear kernel smoothing, in which local neighborhoods are adapted to the local smoothness of the surface measured by the observed data. The procedure can therefore remove noise correctly in continuity regions of the surface and preserve discontinuities at the same time. Since an image can be regarded as a surface of the image intensity function and such a surface has discontinuities at the outlines of objects, this procedure can be applied directly to image denoising. Numerical studies show that it works well in applications, compared to some existing procedures
doi_str_mv 10.1109/TPAMI.2006.140
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1634339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1634339</ieee_id><sourcerecordid>68108775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-83c58356541516c641dd2987343f2e414160e0d461b6e485a508525410aa05df3</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_Aglrq1vXoRZCi0Pc32vfzOUcRWwdIe7DnEyZtlZDezJjtC__tm3QXFQ3sKCZ-8vLwvYycIc0RwX29_nf-4nnMAPUcJB2yGTrhWKOEO2QxQ89Zabo_Yu1LuAVAqEG_ZEWrjODgzY1eXcUHtOlOh_DikRTOswoKaSGkcynYfUmyobOrxZhhTM_ZNHEo3ps2QpnEqTZlyHzoq79mbPiwLfdivx-z3t8vbi6v25uf364vzm7aTQmxaKzplhdJKokLdaYkxcmeNkKLnJFGiBoIoNd5pklYFBVbxqiEEULEXx-zLru46jw9T7cyvaj-0XIZEtR9vnUbnjORVfv6n1BbBGqP-C7mt45UOKvz4Ct6PU071u95qZYRwSlY036Euj6Vk6v061-nlPx7BbzPzT5n5bWa-ZlYvnO2rTncris98H1IFn_YglC4s-xxSN5RnZ6wU5unl050biOhFmTpb4cRfpNWk0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865733954</pqid></control><display><type>article</type><title>Edge-preserving image denoising and estimation of discontinuous surfaces</title><source>IEEE Electronic Library (IEL)</source><creator>Gijbels, I. ; Lambert, A. ; Qiu, P.</creator><creatorcontrib>Gijbels, I. ; Lambert, A. ; Qiu, P.</creatorcontrib><description>In this paper, we are interested in the problem of estimating a discontinuous surface from noisy data. A novel procedure for this problem is proposed based on local linear kernel smoothing, in which local neighborhoods are adapted to the local smoothness of the surface measured by the observed data. The procedure can therefore remove noise correctly in continuity regions of the surface and preserve discontinuities at the same time. Since an image can be regarded as a surface of the image intensity function and such a surface has discontinuities at the outlines of objects, this procedure can be applied directly to image denoising. Numerical studies show that it works well in applications, compared to some existing procedures</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2006.140</identifier><identifier>PMID: 16792097</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Adaptive filters ; Algorithms ; Application software ; Applied sciences ; Artificial Intelligence ; Bayesian methods ; Computer science; control theory; systems ; Computer Simulation ; Continuity ; Corners ; Discontinuity ; edges ; Exact sciences and technology ; Filtering ; Image denoising ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image restoration ; Information Storage and Retrieval - methods ; Intelligence ; jump-preserving estimation ; Kernel ; local linear fit ; Mathematical analysis ; Mathematical models ; Models, Statistical ; noise ; nonparametric regression ; Pattern analysis ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Preserves ; smoothing ; Smoothing methods ; Surface cleaning ; Surface fitting ; weighted residual mean square</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2006-07, Vol.28 (7), p.1075-1087</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-83c58356541516c641dd2987343f2e414160e0d461b6e485a508525410aa05df3</citedby><cites>FETCH-LOGICAL-c433t-83c58356541516c641dd2987343f2e414160e0d461b6e485a508525410aa05df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1634339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1634339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17843754$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16792097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gijbels, I.</creatorcontrib><creatorcontrib>Lambert, A.</creatorcontrib><creatorcontrib>Qiu, P.</creatorcontrib><title>Edge-preserving image denoising and estimation of discontinuous surfaces</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In this paper, we are interested in the problem of estimating a discontinuous surface from noisy data. A novel procedure for this problem is proposed based on local linear kernel smoothing, in which local neighborhoods are adapted to the local smoothness of the surface measured by the observed data. The procedure can therefore remove noise correctly in continuity regions of the surface and preserve discontinuities at the same time. Since an image can be regarded as a surface of the image intensity function and such a surface has discontinuities at the outlines of objects, this procedure can be applied directly to image denoising. Numerical studies show that it works well in applications, compared to some existing procedures</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Continuity</subject><subject>Corners</subject><subject>Discontinuity</subject><subject>edges</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Image denoising</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image restoration</subject><subject>Information Storage and Retrieval - methods</subject><subject>Intelligence</subject><subject>jump-preserving estimation</subject><subject>Kernel</subject><subject>local linear fit</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>noise</subject><subject>nonparametric regression</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Preserves</subject><subject>smoothing</subject><subject>Smoothing methods</subject><subject>Surface cleaning</subject><subject>Surface fitting</subject><subject>weighted residual mean square</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9LHDEUB_Aglrq1vXoRZCi0Pc32vfzOUcRWwdIe7DnEyZtlZDezJjtC__tm3QXFQ3sKCZ-8vLwvYycIc0RwX29_nf-4nnMAPUcJB2yGTrhWKOEO2QxQ89Zabo_Yu1LuAVAqEG_ZEWrjODgzY1eXcUHtOlOh_DikRTOswoKaSGkcynYfUmyobOrxZhhTM_ZNHEo3ps2QpnEqTZlyHzoq79mbPiwLfdivx-z3t8vbi6v25uf364vzm7aTQmxaKzplhdJKokLdaYkxcmeNkKLnJFGiBoIoNd5pklYFBVbxqiEEULEXx-zLru46jw9T7cyvaj-0XIZEtR9vnUbnjORVfv6n1BbBGqP-C7mt45UOKvz4Ct6PU071u95qZYRwSlY036Euj6Vk6v061-nlPx7BbzPzT5n5bWa-ZlYvnO2rTncris98H1IFn_YglC4s-xxSN5RnZ6wU5unl050biOhFmTpb4cRfpNWk0A</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Gijbels, I.</creator><creator>Lambert, A.</creator><creator>Qiu, P.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060701</creationdate><title>Edge-preserving image denoising and estimation of discontinuous surfaces</title><author>Gijbels, I. ; Lambert, A. ; Qiu, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-83c58356541516c641dd2987343f2e414160e0d461b6e485a508525410aa05df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Continuity</topic><topic>Corners</topic><topic>Discontinuity</topic><topic>edges</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Image denoising</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image restoration</topic><topic>Information Storage and Retrieval - methods</topic><topic>Intelligence</topic><topic>jump-preserving estimation</topic><topic>Kernel</topic><topic>local linear fit</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>noise</topic><topic>nonparametric regression</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Preserves</topic><topic>smoothing</topic><topic>Smoothing methods</topic><topic>Surface cleaning</topic><topic>Surface fitting</topic><topic>weighted residual mean square</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gijbels, I.</creatorcontrib><creatorcontrib>Lambert, A.</creatorcontrib><creatorcontrib>Qiu, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gijbels, I.</au><au>Lambert, A.</au><au>Qiu, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-preserving image denoising and estimation of discontinuous surfaces</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>28</volume><issue>7</issue><spage>1075</spage><epage>1087</epage><pages>1075-1087</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>In this paper, we are interested in the problem of estimating a discontinuous surface from noisy data. A novel procedure for this problem is proposed based on local linear kernel smoothing, in which local neighborhoods are adapted to the local smoothness of the surface measured by the observed data. The procedure can therefore remove noise correctly in continuity regions of the surface and preserve discontinuities at the same time. Since an image can be regarded as a surface of the image intensity function and such a surface has discontinuities at the outlines of objects, this procedure can be applied directly to image denoising. Numerical studies show that it works well in applications, compared to some existing procedures</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>16792097</pmid><doi>10.1109/TPAMI.2006.140</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2006-07, Vol.28 (7), p.1075-1087
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_1634339
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Algorithms
Application software
Applied sciences
Artificial Intelligence
Bayesian methods
Computer science
control theory
systems
Computer Simulation
Continuity
Corners
Discontinuity
edges
Exact sciences and technology
Filtering
Image denoising
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image restoration
Information Storage and Retrieval - methods
Intelligence
jump-preserving estimation
Kernel
local linear fit
Mathematical analysis
Mathematical models
Models, Statistical
noise
nonparametric regression
Pattern analysis
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Preserves
smoothing
Smoothing methods
Surface cleaning
Surface fitting
weighted residual mean square
title Edge-preserving image denoising and estimation of discontinuous surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-preserving%20image%20denoising%20and%20estimation%20of%20discontinuous%20surfaces&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Gijbels,%20I.&rft.date=2006-07-01&rft.volume=28&rft.issue=7&rft.spage=1075&rft.epage=1087&rft.pages=1075-1087&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2006.140&rft_dat=%3Cproquest_RIE%3E68108775%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865733954&rft_id=info:pmid/16792097&rft_ieee_id=1634339&rfr_iscdi=true