Mission adaptable autonomous vehicles

The authors discuss lessons learned on a neural autonomous simulator project that can be applied to autonomous underwater vehicles (AUVs). They developed a neural network (NN)-based unmanned air vehicle (UAV) navigation demonstration. The UAV simulation shows friendly flight corridors, enemy air-def...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schiller, I., Draper, J.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 143
container_title
container_volume
creator Schiller, I.
Draper, J.S.
description The authors discuss lessons learned on a neural autonomous simulator project that can be applied to autonomous underwater vehicles (AUVs). They developed a neural network (NN)-based unmanned air vehicle (UAV) navigation demonstration. The UAV simulation shows friendly flight corridors, enemy air-defense sites and the UAV mission targets. The UAV navigates in this hostile environment and reacts to unexpected threats. The study concentrated on the feasibility for noncomputer experts to prepare the UAVs for the specialized missions dictated by mission requirements and the battle situation, such as SAM sites and goal locations, corridors or way points. It was shown that NNs are successful in operating UAVs, and that the mission success rate is improved over fixed way point to way point flying. The simulation shows the potential for enhancing AUV survivability in hostile environments.< >
doi_str_mv 10.1109/ICNN.1991.163340
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_163340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>163340</ieee_id><sourcerecordid>163340</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-d093db7e8eacc3da402dcb4aa8b8c1d757d6a3403fca5526680613648a684c2d3</originalsourceid><addsrcrecordid>eNotj01rwkAURQekoLXupatsukz63rz5yrKEtgrWbnQtLzMjnRKNOLHQf1_B3s3ZHc4VYo5QIUL9vGzW6wrrGis0RApG4h6sAwIJWo7FLOdvuE5rp62aiKePlHPqjwUHPg3cdrHgy9Af-0N_ycVP_Eq-i_lB3O25y3H2z6nYvr1umkW5-nxfNi-rMqGVQxmgptDa6CJ7T4EVyOBbxexa5zFYbYPhaxPtPWstjXFgkIxybJzyMtBUPN68Kca4O53Tgc-_u9sR-gNt2D3V</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mission adaptable autonomous vehicles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schiller, I. ; Draper, J.S.</creator><creatorcontrib>Schiller, I. ; Draper, J.S.</creatorcontrib><description>The authors discuss lessons learned on a neural autonomous simulator project that can be applied to autonomous underwater vehicles (AUVs). They developed a neural network (NN)-based unmanned air vehicle (UAV) navigation demonstration. The UAV simulation shows friendly flight corridors, enemy air-defense sites and the UAV mission targets. The UAV navigates in this hostile environment and reacts to unexpected threats. The study concentrated on the feasibility for noncomputer experts to prepare the UAVs for the specialized missions dictated by mission requirements and the battle situation, such as SAM sites and goal locations, corridors or way points. It was shown that NNs are successful in operating UAVs, and that the mission success rate is improved over fixed way point to way point flying. The simulation shows the potential for enhancing AUV survivability in hostile environments.&lt; &gt;</description><identifier>ISBN: 0780302052</identifier><identifier>ISBN: 9780780302051</identifier><identifier>DOI: 10.1109/ICNN.1991.163340</identifier><language>eng</language><publisher>IEEE</publisher><subject>Expert systems ; Land vehicles ; Mobile robots ; Navigation ; Neural networks ; Remotely operated vehicles ; Robot sensing systems ; Robustness ; Underwater vehicles ; Unmanned aerial vehicles</subject><ispartof>[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering, 1991, p.143-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/163340$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/163340$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schiller, I.</creatorcontrib><creatorcontrib>Draper, J.S.</creatorcontrib><title>Mission adaptable autonomous vehicles</title><title>[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering</title><addtitle>ICNN</addtitle><description>The authors discuss lessons learned on a neural autonomous simulator project that can be applied to autonomous underwater vehicles (AUVs). They developed a neural network (NN)-based unmanned air vehicle (UAV) navigation demonstration. The UAV simulation shows friendly flight corridors, enemy air-defense sites and the UAV mission targets. The UAV navigates in this hostile environment and reacts to unexpected threats. The study concentrated on the feasibility for noncomputer experts to prepare the UAVs for the specialized missions dictated by mission requirements and the battle situation, such as SAM sites and goal locations, corridors or way points. It was shown that NNs are successful in operating UAVs, and that the mission success rate is improved over fixed way point to way point flying. The simulation shows the potential for enhancing AUV survivability in hostile environments.&lt; &gt;</description><subject>Expert systems</subject><subject>Land vehicles</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>Neural networks</subject><subject>Remotely operated vehicles</subject><subject>Robot sensing systems</subject><subject>Robustness</subject><subject>Underwater vehicles</subject><subject>Unmanned aerial vehicles</subject><isbn>0780302052</isbn><isbn>9780780302051</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1991</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01rwkAURQekoLXupatsukz63rz5yrKEtgrWbnQtLzMjnRKNOLHQf1_B3s3ZHc4VYo5QIUL9vGzW6wrrGis0RApG4h6sAwIJWo7FLOdvuE5rp62aiKePlHPqjwUHPg3cdrHgy9Af-0N_ycVP_Eq-i_lB3O25y3H2z6nYvr1umkW5-nxfNi-rMqGVQxmgptDa6CJ7T4EVyOBbxexa5zFYbYPhaxPtPWstjXFgkIxybJzyMtBUPN68Kca4O53Tgc-_u9sR-gNt2D3V</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Schiller, I.</creator><creator>Draper, J.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1991</creationdate><title>Mission adaptable autonomous vehicles</title><author>Schiller, I. ; Draper, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-d093db7e8eacc3da402dcb4aa8b8c1d757d6a3403fca5526680613648a684c2d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Expert systems</topic><topic>Land vehicles</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>Neural networks</topic><topic>Remotely operated vehicles</topic><topic>Robot sensing systems</topic><topic>Robustness</topic><topic>Underwater vehicles</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Schiller, I.</creatorcontrib><creatorcontrib>Draper, J.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schiller, I.</au><au>Draper, J.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mission adaptable autonomous vehicles</atitle><btitle>[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering</btitle><stitle>ICNN</stitle><date>1991</date><risdate>1991</risdate><spage>143</spage><epage>150</epage><pages>143-150</pages><isbn>0780302052</isbn><isbn>9780780302051</isbn><abstract>The authors discuss lessons learned on a neural autonomous simulator project that can be applied to autonomous underwater vehicles (AUVs). They developed a neural network (NN)-based unmanned air vehicle (UAV) navigation demonstration. The UAV simulation shows friendly flight corridors, enemy air-defense sites and the UAV mission targets. The UAV navigates in this hostile environment and reacts to unexpected threats. The study concentrated on the feasibility for noncomputer experts to prepare the UAVs for the specialized missions dictated by mission requirements and the battle situation, such as SAM sites and goal locations, corridors or way points. It was shown that NNs are successful in operating UAVs, and that the mission success rate is improved over fixed way point to way point flying. The simulation shows the potential for enhancing AUV survivability in hostile environments.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1991.163340</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780302052
ispartof [1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering, 1991, p.143-150
issn
language eng
recordid cdi_ieee_primary_163340
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Expert systems
Land vehicles
Mobile robots
Navigation
Neural networks
Remotely operated vehicles
Robot sensing systems
Robustness
Underwater vehicles
Unmanned aerial vehicles
title Mission adaptable autonomous vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A23%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mission%20adaptable%20autonomous%20vehicles&rft.btitle=%5B1991%20Proceedings%5D%20IEEE%20Conference%20on%20Neural%20Networks%20for%20Ocean%20Engineering&rft.au=Schiller,%20I.&rft.date=1991&rft.spage=143&rft.epage=150&rft.pages=143-150&rft.isbn=0780302052&rft.isbn_list=9780780302051&rft_id=info:doi/10.1109/ICNN.1991.163340&rft_dat=%3Cieee_6IE%3E163340%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=163340&rfr_iscdi=true