Thresholding noise-free ordered mean filter based on Dempster-Shafer theory for image restoration

This work proposes a new decision-based filter, the thresholding noise-free ordered mean (TNOM) filter based on the Dempster-Shafer (D-S) evidence theory, to preserve more details of images than can other decision-based filters, while effectively suppressing impulse noise. The new filter mechanism i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2006-05, Vol.53 (5), p.1057-1064
1. Verfasser: Yu, P-T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1064
container_issue 5
container_start_page 1057
container_title IEEE transactions on circuits and systems. 1, Fundamental theory and applications
container_volume 53
creator Yu, P-T
description This work proposes a new decision-based filter, the thresholding noise-free ordered mean (TNOM) filter based on the Dempster-Shafer (D-S) evidence theory, to preserve more details of images than can other decision-based filters, while effectively suppressing impulse noise. The new filter mechanism is composed of an efficient D-S impulse detector and a noise filter that works by estimating the central noise-free ordered mean (CNOM) value. The D-S evidence theory provides a way to deal with the uncertainty in the evidence and information fusion. Pieces of evidence are extracted, and the mass functions defined using the local information in the filter window. Then, the decision rule is applied to determine whether noise exists, according to the final combined belief value. If a pixel is detected to be a corrupted pixel, then the proposed filter will be triggered to replace it. Otherwise, the pixel is kept unchanged. With respect to the noise suppression of noise on both fixed-valued and random-valued impulses without smearing the fine details in the image, extensive simulation results reveal that the proposed scheme significantly outperforms other decision-based filters.
doi_str_mv 10.1109/TCSI.2006.869897
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1629244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1629244</ieee_id><sourcerecordid>2349978141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-723a9a0ef0aa07feec76cff2c5507225c65f636b9cc53a85758b02c7e915d6b93</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsD72gpvgQldT85i8llJfhYKL1nVI05t2ynRSk-mi_94MIwguXCWcfOdcbk5R3BA8JgTrx8VkPh1TjMVYCa20PClGhHNVYoXFaX-vdKkYVefFRUpbjKnGjIwKu9hESJvQrOp2jdpQJyh9BEAhriDCCu3AtsjXTQcRLW3KSmjRM-z2KSvlfGN9fug2EOIR-RBRvbNrQDmzC9F2dWivijNvmwTXP-dl8fn6spi8l7OPt-nkaVY6xllXSsqsthg8thZLD-CkcN5TxzmWlHInuBdMLLVznFnFJVdLTJ0ETfgqy-yyeBhy9zF8HfJ8s6uTg6axLYRDMkrpKieJnrz_l6SKUMKEyODdH3AbDrHNWxglJNWSVzRDeIBcDClF8GYf8yfEoyHY9NWYvhrTV2OGarLldrDUAPCLC6ppVbFv-06K4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867297542</pqid></control><display><type>article</type><title>Thresholding noise-free ordered mean filter based on Dempster-Shafer theory for image restoration</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, P-T</creator><creatorcontrib>Yu, P-T</creatorcontrib><description>This work proposes a new decision-based filter, the thresholding noise-free ordered mean (TNOM) filter based on the Dempster-Shafer (D-S) evidence theory, to preserve more details of images than can other decision-based filters, while effectively suppressing impulse noise. The new filter mechanism is composed of an efficient D-S impulse detector and a noise filter that works by estimating the central noise-free ordered mean (CNOM) value. The D-S evidence theory provides a way to deal with the uncertainty in the evidence and information fusion. Pieces of evidence are extracted, and the mass functions defined using the local information in the filter window. Then, the decision rule is applied to determine whether noise exists, according to the final combined belief value. If a pixel is detected to be a corrupted pixel, then the proposed filter will be triggered to replace it. Otherwise, the pixel is kept unchanged. With respect to the noise suppression of noise on both fixed-valued and random-valued impulses without smearing the fine details in the image, extensive simulation results reveal that the proposed scheme significantly outperforms other decision-based filters.</description><identifier>ISSN: 1549-8328</identifier><identifier>ISSN: 1057-7122</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2006.869897</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Computer science ; Data mining ; Decision theory ; Detectors ; Evidence theory ; filtering ; Filtering theory ; Image restoration ; impulse noise ; Impulses ; Information filtering ; Information filters ; mass function ; median filter ; Noise ; Noise reduction ; Pixels ; Preserves ; Retarding ; Simulation ; Studies ; Switches ; Uncertainty</subject><ispartof>IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2006-05, Vol.53 (5), p.1057-1064</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-723a9a0ef0aa07feec76cff2c5507225c65f636b9cc53a85758b02c7e915d6b93</citedby><cites>FETCH-LOGICAL-c353t-723a9a0ef0aa07feec76cff2c5507225c65f636b9cc53a85758b02c7e915d6b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1629244$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1629244$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, P-T</creatorcontrib><title>Thresholding noise-free ordered mean filter based on Dempster-Shafer theory for image restoration</title><title>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</title><addtitle>TCSI</addtitle><description>This work proposes a new decision-based filter, the thresholding noise-free ordered mean (TNOM) filter based on the Dempster-Shafer (D-S) evidence theory, to preserve more details of images than can other decision-based filters, while effectively suppressing impulse noise. The new filter mechanism is composed of an efficient D-S impulse detector and a noise filter that works by estimating the central noise-free ordered mean (CNOM) value. The D-S evidence theory provides a way to deal with the uncertainty in the evidence and information fusion. Pieces of evidence are extracted, and the mass functions defined using the local information in the filter window. Then, the decision rule is applied to determine whether noise exists, according to the final combined belief value. If a pixel is detected to be a corrupted pixel, then the proposed filter will be triggered to replace it. Otherwise, the pixel is kept unchanged. With respect to the noise suppression of noise on both fixed-valued and random-valued impulses without smearing the fine details in the image, extensive simulation results reveal that the proposed scheme significantly outperforms other decision-based filters.</description><subject>Circuits</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Decision theory</subject><subject>Detectors</subject><subject>Evidence theory</subject><subject>filtering</subject><subject>Filtering theory</subject><subject>Image restoration</subject><subject>impulse noise</subject><subject>Impulses</subject><subject>Information filtering</subject><subject>Information filters</subject><subject>mass function</subject><subject>median filter</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Pixels</subject><subject>Preserves</subject><subject>Retarding</subject><subject>Simulation</subject><subject>Studies</subject><subject>Switches</subject><subject>Uncertainty</subject><issn>1549-8328</issn><issn>1057-7122</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtLAzEUhQdRsD72gpvgQldT85i8llJfhYKL1nVI05t2ynRSk-mi_94MIwguXCWcfOdcbk5R3BA8JgTrx8VkPh1TjMVYCa20PClGhHNVYoXFaX-vdKkYVefFRUpbjKnGjIwKu9hESJvQrOp2jdpQJyh9BEAhriDCCu3AtsjXTQcRLW3KSmjRM-z2KSvlfGN9fug2EOIR-RBRvbNrQDmzC9F2dWivijNvmwTXP-dl8fn6spi8l7OPt-nkaVY6xllXSsqsthg8thZLD-CkcN5TxzmWlHInuBdMLLVznFnFJVdLTJ0ETfgqy-yyeBhy9zF8HfJ8s6uTg6axLYRDMkrpKieJnrz_l6SKUMKEyODdH3AbDrHNWxglJNWSVzRDeIBcDClF8GYf8yfEoyHY9NWYvhrTV2OGarLldrDUAPCLC6ppVbFv-06K4A</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Yu, P-T</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060501</creationdate><title>Thresholding noise-free ordered mean filter based on Dempster-Shafer theory for image restoration</title><author>Yu, P-T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-723a9a0ef0aa07feec76cff2c5507225c65f636b9cc53a85758b02c7e915d6b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Circuits</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Decision theory</topic><topic>Detectors</topic><topic>Evidence theory</topic><topic>filtering</topic><topic>Filtering theory</topic><topic>Image restoration</topic><topic>impulse noise</topic><topic>Impulses</topic><topic>Information filtering</topic><topic>Information filters</topic><topic>mass function</topic><topic>median filter</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Pixels</topic><topic>Preserves</topic><topic>Retarding</topic><topic>Simulation</topic><topic>Studies</topic><topic>Switches</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, P-T</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, P-T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thresholding noise-free ordered mean filter based on Dempster-Shafer theory for image restoration</atitle><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle><stitle>TCSI</stitle><date>2006-05-01</date><risdate>2006</risdate><volume>53</volume><issue>5</issue><spage>1057</spage><epage>1064</epage><pages>1057-1064</pages><issn>1549-8328</issn><issn>1057-7122</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>This work proposes a new decision-based filter, the thresholding noise-free ordered mean (TNOM) filter based on the Dempster-Shafer (D-S) evidence theory, to preserve more details of images than can other decision-based filters, while effectively suppressing impulse noise. The new filter mechanism is composed of an efficient D-S impulse detector and a noise filter that works by estimating the central noise-free ordered mean (CNOM) value. The D-S evidence theory provides a way to deal with the uncertainty in the evidence and information fusion. Pieces of evidence are extracted, and the mass functions defined using the local information in the filter window. Then, the decision rule is applied to determine whether noise exists, according to the final combined belief value. If a pixel is detected to be a corrupted pixel, then the proposed filter will be triggered to replace it. Otherwise, the pixel is kept unchanged. With respect to the noise suppression of noise on both fixed-valued and random-valued impulses without smearing the fine details in the image, extensive simulation results reveal that the proposed scheme significantly outperforms other decision-based filters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2006.869897</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2006-05, Vol.53 (5), p.1057-1064
issn 1549-8328
1057-7122
1558-0806
language eng
recordid cdi_ieee_primary_1629244
source IEEE Electronic Library (IEL)
subjects Circuits
Computer science
Data mining
Decision theory
Detectors
Evidence theory
filtering
Filtering theory
Image restoration
impulse noise
Impulses
Information filtering
Information filters
mass function
median filter
Noise
Noise reduction
Pixels
Preserves
Retarding
Simulation
Studies
Switches
Uncertainty
title Thresholding noise-free ordered mean filter based on Dempster-Shafer theory for image restoration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thresholding%20noise-free%20ordered%20mean%20filter%20based%20on%20Dempster-Shafer%20theory%20for%20image%20restoration&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%201,%20Fundamental%20theory%20and%20applications&rft.au=Yu,%20P-T&rft.date=2006-05-01&rft.volume=53&rft.issue=5&rft.spage=1057&rft.epage=1064&rft.pages=1057-1064&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2006.869897&rft_dat=%3Cproquest_RIE%3E2349978141%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867297542&rft_id=info:pmid/&rft_ieee_id=1629244&rfr_iscdi=true