Piezoresistive MEMS Underwater Shear Stress Sensors

We report on the design and performance of underwater piezoresistive floating-element shear stress sensors for direct dynamic measurements. Our design utilizes sidewall-implanted piezoresistors to measure lateral force and infer shear stress, and traditional top-implanted piezoresistors to detect no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barlian, A.A., Narain, R., Li, J.T., Quance, C.E., Ho, A.C., Mukundan, V., Pruitt, B.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 629
container_issue
container_start_page 626
container_title
container_volume
creator Barlian, A.A.
Narain, R.
Li, J.T.
Quance, C.E.
Ho, A.C.
Mukundan, V.
Pruitt, B.L.
description We report on the design and performance of underwater piezoresistive floating-element shear stress sensors for direct dynamic measurements. Our design utilizes sidewall-implanted piezoresistors to measure lateral force and infer shear stress, and traditional top-implanted piezoresistors to detect normal forces and pressure transients. A gravity-driven flume was used to test the sensors. FEMLAB simulation and microscale Particle Image Velocimetry experiments were used to characterize the flow disturbance over different gap sizes. The results show no detectable disturbance of the flow over the range of sensor gap sizes evaluated (5-20 µ m).
doi_str_mv 10.1109/MEMSYS.2006.1627877
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1627877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1627877</ieee_id><sourcerecordid>1627877</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-29e46ce5f714321a966cc193534fca3cf3f76ca253fd2f00f751549f2cd31b013</originalsourceid><addsrcrecordid>eNotj81KAzEURgNasD8-QTfzAjPem5ufyVJK1UKLwtiFqxIzNxjRVpJB0ae3Yjff2RwOfELMERpEcFeb5aZ76hoJYBo00rbWnokJ2BbIKav1uRgjtKo2zrkLMSnlFUACKjcW9JD455C5pDKkT67-UtV233P-8gPnqnthf9zhaJSq43055DITo-jfCl-eOBXbm-Xj4q5e39-uFtfrOqHVQy0dKxNYR4uKJHpnTAjoSJOKwVOIFK0JXmqKvYwA0WrUykUZesJnQJqK-X83MfPuI6d3n793p4P0C6fMRJk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Piezoresistive MEMS Underwater Shear Stress Sensors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Barlian, A.A. ; Narain, R. ; Li, J.T. ; Quance, C.E. ; Ho, A.C. ; Mukundan, V. ; Pruitt, B.L.</creator><creatorcontrib>Barlian, A.A. ; Narain, R. ; Li, J.T. ; Quance, C.E. ; Ho, A.C. ; Mukundan, V. ; Pruitt, B.L.</creatorcontrib><description>We report on the design and performance of underwater piezoresistive floating-element shear stress sensors for direct dynamic measurements. Our design utilizes sidewall-implanted piezoresistors to measure lateral force and infer shear stress, and traditional top-implanted piezoresistors to detect normal forces and pressure transients. A gravity-driven flume was used to test the sensors. FEMLAB simulation and microscale Particle Image Velocimetry experiments were used to characterize the flow disturbance over different gap sizes. The results show no detectable disturbance of the flow over the range of sensor gap sizes evaluated (5-20 µ m).</description><identifier>ISSN: 1084-6999</identifier><identifier>ISBN: 0780394755</identifier><identifier>ISBN: 9780780394759</identifier><identifier>DOI: 10.1109/MEMSYS.2006.1627877</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromechanical sensors ; Etching ; Fabrication ; Force measurement ; Geometry ; Implants ; Micromechanical devices ; Piezoresistive devices ; Sensor phenomena and characterization ; Stress measurement</subject><ispartof>19th IEEE International Conference on Micro Electro Mechanical Systems, 2006, p.626-629</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1627877$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1627877$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barlian, A.A.</creatorcontrib><creatorcontrib>Narain, R.</creatorcontrib><creatorcontrib>Li, J.T.</creatorcontrib><creatorcontrib>Quance, C.E.</creatorcontrib><creatorcontrib>Ho, A.C.</creatorcontrib><creatorcontrib>Mukundan, V.</creatorcontrib><creatorcontrib>Pruitt, B.L.</creatorcontrib><title>Piezoresistive MEMS Underwater Shear Stress Sensors</title><title>19th IEEE International Conference on Micro Electro Mechanical Systems</title><addtitle>MEMSYS</addtitle><description>We report on the design and performance of underwater piezoresistive floating-element shear stress sensors for direct dynamic measurements. Our design utilizes sidewall-implanted piezoresistors to measure lateral force and infer shear stress, and traditional top-implanted piezoresistors to detect normal forces and pressure transients. A gravity-driven flume was used to test the sensors. FEMLAB simulation and microscale Particle Image Velocimetry experiments were used to characterize the flow disturbance over different gap sizes. The results show no detectable disturbance of the flow over the range of sensor gap sizes evaluated (5-20 µ m).</description><subject>Electromechanical sensors</subject><subject>Etching</subject><subject>Fabrication</subject><subject>Force measurement</subject><subject>Geometry</subject><subject>Implants</subject><subject>Micromechanical devices</subject><subject>Piezoresistive devices</subject><subject>Sensor phenomena and characterization</subject><subject>Stress measurement</subject><issn>1084-6999</issn><isbn>0780394755</isbn><isbn>9780780394759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KAzEURgNasD8-QTfzAjPem5ufyVJK1UKLwtiFqxIzNxjRVpJB0ae3Yjff2RwOfELMERpEcFeb5aZ76hoJYBo00rbWnokJ2BbIKav1uRgjtKo2zrkLMSnlFUACKjcW9JD455C5pDKkT67-UtV233P-8gPnqnthf9zhaJSq43055DITo-jfCl-eOBXbm-Xj4q5e39-uFtfrOqHVQy0dKxNYR4uKJHpnTAjoSJOKwVOIFK0JXmqKvYwA0WrUykUZesJnQJqK-X83MfPuI6d3n793p4P0C6fMRJk</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Barlian, A.A.</creator><creator>Narain, R.</creator><creator>Li, J.T.</creator><creator>Quance, C.E.</creator><creator>Ho, A.C.</creator><creator>Mukundan, V.</creator><creator>Pruitt, B.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Piezoresistive MEMS Underwater Shear Stress Sensors</title><author>Barlian, A.A. ; Narain, R. ; Li, J.T. ; Quance, C.E. ; Ho, A.C. ; Mukundan, V. ; Pruitt, B.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-29e46ce5f714321a966cc193534fca3cf3f76ca253fd2f00f751549f2cd31b013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Electromechanical sensors</topic><topic>Etching</topic><topic>Fabrication</topic><topic>Force measurement</topic><topic>Geometry</topic><topic>Implants</topic><topic>Micromechanical devices</topic><topic>Piezoresistive devices</topic><topic>Sensor phenomena and characterization</topic><topic>Stress measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Barlian, A.A.</creatorcontrib><creatorcontrib>Narain, R.</creatorcontrib><creatorcontrib>Li, J.T.</creatorcontrib><creatorcontrib>Quance, C.E.</creatorcontrib><creatorcontrib>Ho, A.C.</creatorcontrib><creatorcontrib>Mukundan, V.</creatorcontrib><creatorcontrib>Pruitt, B.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barlian, A.A.</au><au>Narain, R.</au><au>Li, J.T.</au><au>Quance, C.E.</au><au>Ho, A.C.</au><au>Mukundan, V.</au><au>Pruitt, B.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Piezoresistive MEMS Underwater Shear Stress Sensors</atitle><btitle>19th IEEE International Conference on Micro Electro Mechanical Systems</btitle><stitle>MEMSYS</stitle><date>2006</date><risdate>2006</risdate><spage>626</spage><epage>629</epage><pages>626-629</pages><issn>1084-6999</issn><isbn>0780394755</isbn><isbn>9780780394759</isbn><abstract>We report on the design and performance of underwater piezoresistive floating-element shear stress sensors for direct dynamic measurements. Our design utilizes sidewall-implanted piezoresistors to measure lateral force and infer shear stress, and traditional top-implanted piezoresistors to detect normal forces and pressure transients. A gravity-driven flume was used to test the sensors. FEMLAB simulation and microscale Particle Image Velocimetry experiments were used to characterize the flow disturbance over different gap sizes. The results show no detectable disturbance of the flow over the range of sensor gap sizes evaluated (5-20 µ m).</abstract><pub>IEEE</pub><doi>10.1109/MEMSYS.2006.1627877</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1084-6999
ispartof 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006, p.626-629
issn 1084-6999
language eng
recordid cdi_ieee_primary_1627877
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Electromechanical sensors
Etching
Fabrication
Force measurement
Geometry
Implants
Micromechanical devices
Piezoresistive devices
Sensor phenomena and characterization
Stress measurement
title Piezoresistive MEMS Underwater Shear Stress Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Piezoresistive%20MEMS%20Underwater%20Shear%20Stress%20Sensors&rft.btitle=19th%20IEEE%20International%20Conference%20on%20Micro%20Electro%20Mechanical%20Systems&rft.au=Barlian,%20A.A.&rft.date=2006&rft.spage=626&rft.epage=629&rft.pages=626-629&rft.issn=1084-6999&rft.isbn=0780394755&rft.isbn_list=9780780394759&rft_id=info:doi/10.1109/MEMSYS.2006.1627877&rft_dat=%3Cieee_6IE%3E1627877%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1627877&rfr_iscdi=true