Commuting Hyperoperations
Centralizer of a set of hyperoperations F is a clone of hyperoperations that commute with all hyperoperations from F. There are several ways to define this commuting operator which imply several definitions of centralizers of sets of hyperoperations and they are considered in this paper. In order to...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | |
container_start_page | 21 |
container_title | |
container_volume | |
creator | Pantovic, J. Vojvodic, G. |
description | Centralizer of a set of hyperoperations F is a clone of hyperoperations that commute with all hyperoperations from F. There are several ways to define this commuting operator which imply several definitions of centralizers of sets of hyperoperations and they are considered in this paper. In order to obtain their properties, we discuss the definition of graph of hyperoperation, relation on A^n × (P(A) \ {0}) and lifting of such relation to (P(A) \ {0}^n+1. |
doi_str_mv | 10.1109/ISMVL.2006.15 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1623973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1623973</ieee_id><sourcerecordid>1623973</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-74bd98f8eecfe746c4f9b22a30450bbdf90fdd6822dd2e8a10c90328e0125f9f3</originalsourceid><addsrcrecordid>eNotjstKw0AUQC8-wFi7dCFu_IGJd-5kHncpQW0h4sIi7sokMyMjpilJXPTvLejicHaHA3AtsZQS-X799vLelIRoSqlPoCBlnSAicwpLtg6tYU1akT2DAiVrYUh9XMDlNH0hEpLFAm7qoe9_5rz7vFsd9nEcjvg5D7vpCs6T_57i8t8L2Dw9buqVaF6f1_VDIzLjLGzVBnbJxdilaCvTVYlbIq-w0ti2ITGmEIwjCoGi8xI7RkUuoiSdOKkF3P5lc4xxux9z78fDVh5X2Sr1Cy-1PR8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Commuting Hyperoperations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pantovic, J. ; Vojvodic, G.</creator><creatorcontrib>Pantovic, J. ; Vojvodic, G.</creatorcontrib><description>Centralizer of a set of hyperoperations F is a clone of hyperoperations that commute with all hyperoperations from F. There are several ways to define this commuting operator which imply several definitions of centralizers of sets of hyperoperations and they are considered in this paper. In order to obtain their properties, we discuss the definition of graph of hyperoperation, relation on A^n × (P(A) \ {0}) and lifting of such relation to (P(A) \ {0}^n+1.</description><identifier>ISSN: 0195-623X</identifier><identifier>ISBN: 9780769525327</identifier><identifier>ISBN: 0769525326</identifier><identifier>EISSN: 2378-2226</identifier><identifier>DOI: 10.1109/ISMVL.2006.15</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Automata ; Cloning ; Mathematics</subject><ispartof>36th International Symposium on Multiple-Valued Logic (ISMVL'06), 2006, p.21-21</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1623973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1623973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pantovic, J.</creatorcontrib><creatorcontrib>Vojvodic, G.</creatorcontrib><title>Commuting Hyperoperations</title><title>36th International Symposium on Multiple-Valued Logic (ISMVL'06)</title><addtitle>ISMVL</addtitle><description>Centralizer of a set of hyperoperations F is a clone of hyperoperations that commute with all hyperoperations from F. There are several ways to define this commuting operator which imply several definitions of centralizers of sets of hyperoperations and they are considered in this paper. In order to obtain their properties, we discuss the definition of graph of hyperoperation, relation on A^n × (P(A) \ {0}) and lifting of such relation to (P(A) \ {0}^n+1.</description><subject>Algebra</subject><subject>Automata</subject><subject>Cloning</subject><subject>Mathematics</subject><issn>0195-623X</issn><issn>2378-2226</issn><isbn>9780769525327</isbn><isbn>0769525326</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjstKw0AUQC8-wFi7dCFu_IGJd-5kHncpQW0h4sIi7sokMyMjpilJXPTvLejicHaHA3AtsZQS-X799vLelIRoSqlPoCBlnSAicwpLtg6tYU1akT2DAiVrYUh9XMDlNH0hEpLFAm7qoe9_5rz7vFsd9nEcjvg5D7vpCs6T_57i8t8L2Dw9buqVaF6f1_VDIzLjLGzVBnbJxdilaCvTVYlbIq-w0ti2ITGmEIwjCoGi8xI7RkUuoiSdOKkF3P5lc4xxux9z78fDVh5X2Sr1Cy-1PR8</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Pantovic, J.</creator><creator>Vojvodic, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Commuting Hyperoperations</title><author>Pantovic, J. ; Vojvodic, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-74bd98f8eecfe746c4f9b22a30450bbdf90fdd6822dd2e8a10c90328e0125f9f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebra</topic><topic>Automata</topic><topic>Cloning</topic><topic>Mathematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Pantovic, J.</creatorcontrib><creatorcontrib>Vojvodic, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pantovic, J.</au><au>Vojvodic, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Commuting Hyperoperations</atitle><btitle>36th International Symposium on Multiple-Valued Logic (ISMVL'06)</btitle><stitle>ISMVL</stitle><date>2006</date><risdate>2006</risdate><spage>21</spage><epage>21</epage><pages>21-21</pages><issn>0195-623X</issn><eissn>2378-2226</eissn><isbn>9780769525327</isbn><isbn>0769525326</isbn><abstract>Centralizer of a set of hyperoperations F is a clone of hyperoperations that commute with all hyperoperations from F. There are several ways to define this commuting operator which imply several definitions of centralizers of sets of hyperoperations and they are considered in this paper. In order to obtain their properties, we discuss the definition of graph of hyperoperation, relation on A^n × (P(A) \ {0}) and lifting of such relation to (P(A) \ {0}^n+1.</abstract><pub>IEEE</pub><doi>10.1109/ISMVL.2006.15</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0195-623X |
ispartof | 36th International Symposium on Multiple-Valued Logic (ISMVL'06), 2006, p.21-21 |
issn | 0195-623X 2378-2226 |
language | eng |
recordid | cdi_ieee_primary_1623973 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algebra Automata Cloning Mathematics |
title | Commuting Hyperoperations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Commuting%20Hyperoperations&rft.btitle=36th%20International%20Symposium%20on%20Multiple-Valued%20Logic%20(ISMVL'06)&rft.au=Pantovic,%20J.&rft.date=2006&rft.spage=21&rft.epage=21&rft.pages=21-21&rft.issn=0195-623X&rft.eissn=2378-2226&rft.isbn=9780769525327&rft.isbn_list=0769525326&rft_id=info:doi/10.1109/ISMVL.2006.15&rft_dat=%3Cieee_6IE%3E1623973%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1623973&rfr_iscdi=true |