Commuting Hyperoperations

Centralizer of a set of hyperoperations F is a clone of hyperoperations that commute with all hyperoperations from F. There are several ways to define this commuting operator which imply several definitions of centralizers of sets of hyperoperations and they are considered in this paper. In order to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pantovic, J., Vojvodic, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue
container_start_page 21
container_title
container_volume
creator Pantovic, J.
Vojvodic, G.
description Centralizer of a set of hyperoperations F is a clone of hyperoperations that commute with all hyperoperations from F. There are several ways to define this commuting operator which imply several definitions of centralizers of sets of hyperoperations and they are considered in this paper. In order to obtain their properties, we discuss the definition of graph of hyperoperation, relation on A^n × (P(A) \ {0}) and lifting of such relation to (P(A) \ {0}^n+1.
doi_str_mv 10.1109/ISMVL.2006.15
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1623973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1623973</ieee_id><sourcerecordid>1623973</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-74bd98f8eecfe746c4f9b22a30450bbdf90fdd6822dd2e8a10c90328e0125f9f3</originalsourceid><addsrcrecordid>eNotjstKw0AUQC8-wFi7dCFu_IGJd-5kHncpQW0h4sIi7sokMyMjpilJXPTvLejicHaHA3AtsZQS-X799vLelIRoSqlPoCBlnSAicwpLtg6tYU1akT2DAiVrYUh9XMDlNH0hEpLFAm7qoe9_5rz7vFsd9nEcjvg5D7vpCs6T_57i8t8L2Dw9buqVaF6f1_VDIzLjLGzVBnbJxdilaCvTVYlbIq-w0ti2ITGmEIwjCoGi8xI7RkUuoiSdOKkF3P5lc4xxux9z78fDVh5X2Sr1Cy-1PR8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Commuting Hyperoperations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pantovic, J. ; Vojvodic, G.</creator><creatorcontrib>Pantovic, J. ; Vojvodic, G.</creatorcontrib><description>Centralizer of a set of hyperoperations F is a clone of hyperoperations that commute with all hyperoperations from F. There are several ways to define this commuting operator which imply several definitions of centralizers of sets of hyperoperations and they are considered in this paper. In order to obtain their properties, we discuss the definition of graph of hyperoperation, relation on A^n × (P(A) \ {0}) and lifting of such relation to (P(A) \ {0}^n+1.</description><identifier>ISSN: 0195-623X</identifier><identifier>ISBN: 9780769525327</identifier><identifier>ISBN: 0769525326</identifier><identifier>EISSN: 2378-2226</identifier><identifier>DOI: 10.1109/ISMVL.2006.15</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Automata ; Cloning ; Mathematics</subject><ispartof>36th International Symposium on Multiple-Valued Logic (ISMVL'06), 2006, p.21-21</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1623973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1623973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pantovic, J.</creatorcontrib><creatorcontrib>Vojvodic, G.</creatorcontrib><title>Commuting Hyperoperations</title><title>36th International Symposium on Multiple-Valued Logic (ISMVL'06)</title><addtitle>ISMVL</addtitle><description>Centralizer of a set of hyperoperations F is a clone of hyperoperations that commute with all hyperoperations from F. There are several ways to define this commuting operator which imply several definitions of centralizers of sets of hyperoperations and they are considered in this paper. In order to obtain their properties, we discuss the definition of graph of hyperoperation, relation on A^n × (P(A) \ {0}) and lifting of such relation to (P(A) \ {0}^n+1.</description><subject>Algebra</subject><subject>Automata</subject><subject>Cloning</subject><subject>Mathematics</subject><issn>0195-623X</issn><issn>2378-2226</issn><isbn>9780769525327</isbn><isbn>0769525326</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjstKw0AUQC8-wFi7dCFu_IGJd-5kHncpQW0h4sIi7sokMyMjpilJXPTvLejicHaHA3AtsZQS-X799vLelIRoSqlPoCBlnSAicwpLtg6tYU1akT2DAiVrYUh9XMDlNH0hEpLFAm7qoe9_5rz7vFsd9nEcjvg5D7vpCs6T_57i8t8L2Dw9buqVaF6f1_VDIzLjLGzVBnbJxdilaCvTVYlbIq-w0ti2ITGmEIwjCoGi8xI7RkUuoiSdOKkF3P5lc4xxux9z78fDVh5X2Sr1Cy-1PR8</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Pantovic, J.</creator><creator>Vojvodic, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Commuting Hyperoperations</title><author>Pantovic, J. ; Vojvodic, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-74bd98f8eecfe746c4f9b22a30450bbdf90fdd6822dd2e8a10c90328e0125f9f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebra</topic><topic>Automata</topic><topic>Cloning</topic><topic>Mathematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Pantovic, J.</creatorcontrib><creatorcontrib>Vojvodic, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pantovic, J.</au><au>Vojvodic, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Commuting Hyperoperations</atitle><btitle>36th International Symposium on Multiple-Valued Logic (ISMVL'06)</btitle><stitle>ISMVL</stitle><date>2006</date><risdate>2006</risdate><spage>21</spage><epage>21</epage><pages>21-21</pages><issn>0195-623X</issn><eissn>2378-2226</eissn><isbn>9780769525327</isbn><isbn>0769525326</isbn><abstract>Centralizer of a set of hyperoperations F is a clone of hyperoperations that commute with all hyperoperations from F. There are several ways to define this commuting operator which imply several definitions of centralizers of sets of hyperoperations and they are considered in this paper. In order to obtain their properties, we discuss the definition of graph of hyperoperation, relation on A^n × (P(A) \ {0}) and lifting of such relation to (P(A) \ {0}^n+1.</abstract><pub>IEEE</pub><doi>10.1109/ISMVL.2006.15</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0195-623X
ispartof 36th International Symposium on Multiple-Valued Logic (ISMVL'06), 2006, p.21-21
issn 0195-623X
2378-2226
language eng
recordid cdi_ieee_primary_1623973
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algebra
Automata
Cloning
Mathematics
title Commuting Hyperoperations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Commuting%20Hyperoperations&rft.btitle=36th%20International%20Symposium%20on%20Multiple-Valued%20Logic%20(ISMVL'06)&rft.au=Pantovic,%20J.&rft.date=2006&rft.spage=21&rft.epage=21&rft.pages=21-21&rft.issn=0195-623X&rft.eissn=2378-2226&rft.isbn=9780769525327&rft.isbn_list=0769525326&rft_id=info:doi/10.1109/ISMVL.2006.15&rft_dat=%3Cieee_6IE%3E1623973%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1623973&rfr_iscdi=true