Multimodality Sensors for Sleep Quality Monitoring and Logging
In this paper, we investigate the possibility of using simple multimodality sensors to automatically detect a person's sleep condition. We propose a system which consists of heart-rate, video, and audio sensors, and apply machine learning methods to infer the sleep-awake condition during the ti...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | x108 |
---|---|
container_issue | |
container_start_page | x108 |
container_title | |
container_volume | |
creator | Ya-Ti Peng Ching-Yung Lin Ming-Ting Sun |
description | In this paper, we investigate the possibility of using simple multimodality sensors to automatically detect a person's sleep condition. We propose a system which consists of heart-rate, video, and audio sensors, and apply machine learning methods to infer the sleep-awake condition during the time a user spends on the bed. The sleep-awake conditions will be useful information for inferring sleep latency and sleep efficiency, which are critical to both sleep-related diseases and sleep quality measurements. To eliminate possible privacy concerns, we further explore the feasibility of using passive infrared (PIR) sensor instead of video sensor for motion information acquisition. Our experimental results are promising and show the potential use of the proposed novel economical alternative to the traditional medical measurement equipment, with competitive performance on the sleeprelated activity monitoring and the sleep quality measurements. |
doi_str_mv | 10.1109/ICDEW.2006.97 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1623901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1623901</ieee_id><sourcerecordid>1623901</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e5f8eabcf2943b4ea8a7e2c0f289b47b3883211789cd0b4486ba16b18db48ca73</originalsourceid><addsrcrecordid>eNotjEFLwzAYQAMiKLNHT17yBzq_L0mTfBdB6tRBh8gGHkfSpiXSNaPtDvv3CtvpPXjwGHtEWCICPa_Lt9XPUgDoJZkblpGxYDQVojCo71g2Tb8AgKRtQXjPXjanfo6H1Lg-zme-DcOUxom3aeTbPoQj_z5dyiYNcU5jHDruhoZXqev-_YHdtq6fQnblgu3eV7vyM6--Ptbla5VHgjkPRWuD83UrSEmvgrPOBFFDKyx5Zby0VgpEY6luwCtltXeoPdrGK1s7Ixfs6bKNIYT9cYwHN573qIUkQPkHQl5HNw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multimodality Sensors for Sleep Quality Monitoring and Logging</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ya-Ti Peng ; Ching-Yung Lin ; Ming-Ting Sun</creator><creatorcontrib>Ya-Ti Peng ; Ching-Yung Lin ; Ming-Ting Sun</creatorcontrib><description>In this paper, we investigate the possibility of using simple multimodality sensors to automatically detect a person's sleep condition. We propose a system which consists of heart-rate, video, and audio sensors, and apply machine learning methods to infer the sleep-awake condition during the time a user spends on the bed. The sleep-awake conditions will be useful information for inferring sleep latency and sleep efficiency, which are critical to both sleep-related diseases and sleep quality measurements. To eliminate possible privacy concerns, we further explore the feasibility of using passive infrared (PIR) sensor instead of video sensor for motion information acquisition. Our experimental results are promising and show the potential use of the proposed novel economical alternative to the traditional medical measurement equipment, with competitive performance on the sleeprelated activity monitoring and the sleep quality measurements.</description><identifier>ISBN: 9780769525716</identifier><identifier>ISBN: 0769525717</identifier><identifier>DOI: 10.1109/ICDEW.2006.97</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cardiac disease ; Cardiovascular diseases ; Delay ; Infrared sensors ; Learning systems ; Monitoring ; Multimodal sensors ; Privacy ; Sensor systems ; Sleep</subject><ispartof>22nd International Conference on Data Engineering Workshops (ICDEW'06), 2006, p.x108-x108</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1623901$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54897</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1623901$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ya-Ti Peng</creatorcontrib><creatorcontrib>Ching-Yung Lin</creatorcontrib><creatorcontrib>Ming-Ting Sun</creatorcontrib><title>Multimodality Sensors for Sleep Quality Monitoring and Logging</title><title>22nd International Conference on Data Engineering Workshops (ICDEW'06)</title><addtitle>ICDEW</addtitle><description>In this paper, we investigate the possibility of using simple multimodality sensors to automatically detect a person's sleep condition. We propose a system which consists of heart-rate, video, and audio sensors, and apply machine learning methods to infer the sleep-awake condition during the time a user spends on the bed. The sleep-awake conditions will be useful information for inferring sleep latency and sleep efficiency, which are critical to both sleep-related diseases and sleep quality measurements. To eliminate possible privacy concerns, we further explore the feasibility of using passive infrared (PIR) sensor instead of video sensor for motion information acquisition. Our experimental results are promising and show the potential use of the proposed novel economical alternative to the traditional medical measurement equipment, with competitive performance on the sleeprelated activity monitoring and the sleep quality measurements.</description><subject>Cardiac disease</subject><subject>Cardiovascular diseases</subject><subject>Delay</subject><subject>Infrared sensors</subject><subject>Learning systems</subject><subject>Monitoring</subject><subject>Multimodal sensors</subject><subject>Privacy</subject><subject>Sensor systems</subject><subject>Sleep</subject><isbn>9780769525716</isbn><isbn>0769525717</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEFLwzAYQAMiKLNHT17yBzq_L0mTfBdB6tRBh8gGHkfSpiXSNaPtDvv3CtvpPXjwGHtEWCICPa_Lt9XPUgDoJZkblpGxYDQVojCo71g2Tb8AgKRtQXjPXjanfo6H1Lg-zme-DcOUxom3aeTbPoQj_z5dyiYNcU5jHDruhoZXqev-_YHdtq6fQnblgu3eV7vyM6--Ptbla5VHgjkPRWuD83UrSEmvgrPOBFFDKyx5Zby0VgpEY6luwCtltXeoPdrGK1s7Ixfs6bKNIYT9cYwHN573qIUkQPkHQl5HNw</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Ya-Ti Peng</creator><creator>Ching-Yung Lin</creator><creator>Ming-Ting Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Multimodality Sensors for Sleep Quality Monitoring and Logging</title><author>Ya-Ti Peng ; Ching-Yung Lin ; Ming-Ting Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e5f8eabcf2943b4ea8a7e2c0f289b47b3883211789cd0b4486ba16b18db48ca73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cardiac disease</topic><topic>Cardiovascular diseases</topic><topic>Delay</topic><topic>Infrared sensors</topic><topic>Learning systems</topic><topic>Monitoring</topic><topic>Multimodal sensors</topic><topic>Privacy</topic><topic>Sensor systems</topic><topic>Sleep</topic><toplevel>online_resources</toplevel><creatorcontrib>Ya-Ti Peng</creatorcontrib><creatorcontrib>Ching-Yung Lin</creatorcontrib><creatorcontrib>Ming-Ting Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ya-Ti Peng</au><au>Ching-Yung Lin</au><au>Ming-Ting Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multimodality Sensors for Sleep Quality Monitoring and Logging</atitle><btitle>22nd International Conference on Data Engineering Workshops (ICDEW'06)</btitle><stitle>ICDEW</stitle><date>2006</date><risdate>2006</risdate><spage>x108</spage><epage>x108</epage><pages>x108-x108</pages><isbn>9780769525716</isbn><isbn>0769525717</isbn><abstract>In this paper, we investigate the possibility of using simple multimodality sensors to automatically detect a person's sleep condition. We propose a system which consists of heart-rate, video, and audio sensors, and apply machine learning methods to infer the sleep-awake condition during the time a user spends on the bed. The sleep-awake conditions will be useful information for inferring sleep latency and sleep efficiency, which are critical to both sleep-related diseases and sleep quality measurements. To eliminate possible privacy concerns, we further explore the feasibility of using passive infrared (PIR) sensor instead of video sensor for motion information acquisition. Our experimental results are promising and show the potential use of the proposed novel economical alternative to the traditional medical measurement equipment, with competitive performance on the sleeprelated activity monitoring and the sleep quality measurements.</abstract><pub>IEEE</pub><doi>10.1109/ICDEW.2006.97</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769525716 |
ispartof | 22nd International Conference on Data Engineering Workshops (ICDEW'06), 2006, p.x108-x108 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1623901 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cardiac disease Cardiovascular diseases Delay Infrared sensors Learning systems Monitoring Multimodal sensors Privacy Sensor systems Sleep |
title | Multimodality Sensors for Sleep Quality Monitoring and Logging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multimodality%20Sensors%20for%20Sleep%20Quality%20Monitoring%20and%20Logging&rft.btitle=22nd%20International%20Conference%20on%20Data%20Engineering%20Workshops%20(ICDEW'06)&rft.au=Ya-Ti%20Peng&rft.date=2006&rft.spage=x108&rft.epage=x108&rft.pages=x108-x108&rft.isbn=9780769525716&rft.isbn_list=0769525717&rft_id=info:doi/10.1109/ICDEW.2006.97&rft_dat=%3Cieee_6IE%3E1623901%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1623901&rfr_iscdi=true |