Multimodality Sensors for Sleep Quality Monitoring and Logging

In this paper, we investigate the possibility of using simple multimodality sensors to automatically detect a person's sleep condition. We propose a system which consists of heart-rate, video, and audio sensors, and apply machine learning methods to infer the sleep-awake condition during the ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ya-Ti Peng, Ching-Yung Lin, Ming-Ting Sun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page x108
container_issue
container_start_page x108
container_title
container_volume
creator Ya-Ti Peng
Ching-Yung Lin
Ming-Ting Sun
description In this paper, we investigate the possibility of using simple multimodality sensors to automatically detect a person's sleep condition. We propose a system which consists of heart-rate, video, and audio sensors, and apply machine learning methods to infer the sleep-awake condition during the time a user spends on the bed. The sleep-awake conditions will be useful information for inferring sleep latency and sleep efficiency, which are critical to both sleep-related diseases and sleep quality measurements. To eliminate possible privacy concerns, we further explore the feasibility of using passive infrared (PIR) sensor instead of video sensor for motion information acquisition. Our experimental results are promising and show the potential use of the proposed novel economical alternative to the traditional medical measurement equipment, with competitive performance on the sleeprelated activity monitoring and the sleep quality measurements.
doi_str_mv 10.1109/ICDEW.2006.97
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1623901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1623901</ieee_id><sourcerecordid>1623901</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e5f8eabcf2943b4ea8a7e2c0f289b47b3883211789cd0b4486ba16b18db48ca73</originalsourceid><addsrcrecordid>eNotjEFLwzAYQAMiKLNHT17yBzq_L0mTfBdB6tRBh8gGHkfSpiXSNaPtDvv3CtvpPXjwGHtEWCICPa_Lt9XPUgDoJZkblpGxYDQVojCo71g2Tb8AgKRtQXjPXjanfo6H1Lg-zme-DcOUxom3aeTbPoQj_z5dyiYNcU5jHDruhoZXqev-_YHdtq6fQnblgu3eV7vyM6--Ptbla5VHgjkPRWuD83UrSEmvgrPOBFFDKyx5Zby0VgpEY6luwCtltXeoPdrGK1s7Ixfs6bKNIYT9cYwHN573qIUkQPkHQl5HNw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multimodality Sensors for Sleep Quality Monitoring and Logging</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ya-Ti Peng ; Ching-Yung Lin ; Ming-Ting Sun</creator><creatorcontrib>Ya-Ti Peng ; Ching-Yung Lin ; Ming-Ting Sun</creatorcontrib><description>In this paper, we investigate the possibility of using simple multimodality sensors to automatically detect a person's sleep condition. We propose a system which consists of heart-rate, video, and audio sensors, and apply machine learning methods to infer the sleep-awake condition during the time a user spends on the bed. The sleep-awake conditions will be useful information for inferring sleep latency and sleep efficiency, which are critical to both sleep-related diseases and sleep quality measurements. To eliminate possible privacy concerns, we further explore the feasibility of using passive infrared (PIR) sensor instead of video sensor for motion information acquisition. Our experimental results are promising and show the potential use of the proposed novel economical alternative to the traditional medical measurement equipment, with competitive performance on the sleeprelated activity monitoring and the sleep quality measurements.</description><identifier>ISBN: 9780769525716</identifier><identifier>ISBN: 0769525717</identifier><identifier>DOI: 10.1109/ICDEW.2006.97</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cardiac disease ; Cardiovascular diseases ; Delay ; Infrared sensors ; Learning systems ; Monitoring ; Multimodal sensors ; Privacy ; Sensor systems ; Sleep</subject><ispartof>22nd International Conference on Data Engineering Workshops (ICDEW'06), 2006, p.x108-x108</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1623901$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54897</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1623901$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ya-Ti Peng</creatorcontrib><creatorcontrib>Ching-Yung Lin</creatorcontrib><creatorcontrib>Ming-Ting Sun</creatorcontrib><title>Multimodality Sensors for Sleep Quality Monitoring and Logging</title><title>22nd International Conference on Data Engineering Workshops (ICDEW'06)</title><addtitle>ICDEW</addtitle><description>In this paper, we investigate the possibility of using simple multimodality sensors to automatically detect a person's sleep condition. We propose a system which consists of heart-rate, video, and audio sensors, and apply machine learning methods to infer the sleep-awake condition during the time a user spends on the bed. The sleep-awake conditions will be useful information for inferring sleep latency and sleep efficiency, which are critical to both sleep-related diseases and sleep quality measurements. To eliminate possible privacy concerns, we further explore the feasibility of using passive infrared (PIR) sensor instead of video sensor for motion information acquisition. Our experimental results are promising and show the potential use of the proposed novel economical alternative to the traditional medical measurement equipment, with competitive performance on the sleeprelated activity monitoring and the sleep quality measurements.</description><subject>Cardiac disease</subject><subject>Cardiovascular diseases</subject><subject>Delay</subject><subject>Infrared sensors</subject><subject>Learning systems</subject><subject>Monitoring</subject><subject>Multimodal sensors</subject><subject>Privacy</subject><subject>Sensor systems</subject><subject>Sleep</subject><isbn>9780769525716</isbn><isbn>0769525717</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEFLwzAYQAMiKLNHT17yBzq_L0mTfBdB6tRBh8gGHkfSpiXSNaPtDvv3CtvpPXjwGHtEWCICPa_Lt9XPUgDoJZkblpGxYDQVojCo71g2Tb8AgKRtQXjPXjanfo6H1Lg-zme-DcOUxom3aeTbPoQj_z5dyiYNcU5jHDruhoZXqev-_YHdtq6fQnblgu3eV7vyM6--Ptbla5VHgjkPRWuD83UrSEmvgrPOBFFDKyx5Zby0VgpEY6luwCtltXeoPdrGK1s7Ixfs6bKNIYT9cYwHN573qIUkQPkHQl5HNw</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Ya-Ti Peng</creator><creator>Ching-Yung Lin</creator><creator>Ming-Ting Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Multimodality Sensors for Sleep Quality Monitoring and Logging</title><author>Ya-Ti Peng ; Ching-Yung Lin ; Ming-Ting Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e5f8eabcf2943b4ea8a7e2c0f289b47b3883211789cd0b4486ba16b18db48ca73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cardiac disease</topic><topic>Cardiovascular diseases</topic><topic>Delay</topic><topic>Infrared sensors</topic><topic>Learning systems</topic><topic>Monitoring</topic><topic>Multimodal sensors</topic><topic>Privacy</topic><topic>Sensor systems</topic><topic>Sleep</topic><toplevel>online_resources</toplevel><creatorcontrib>Ya-Ti Peng</creatorcontrib><creatorcontrib>Ching-Yung Lin</creatorcontrib><creatorcontrib>Ming-Ting Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ya-Ti Peng</au><au>Ching-Yung Lin</au><au>Ming-Ting Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multimodality Sensors for Sleep Quality Monitoring and Logging</atitle><btitle>22nd International Conference on Data Engineering Workshops (ICDEW'06)</btitle><stitle>ICDEW</stitle><date>2006</date><risdate>2006</risdate><spage>x108</spage><epage>x108</epage><pages>x108-x108</pages><isbn>9780769525716</isbn><isbn>0769525717</isbn><abstract>In this paper, we investigate the possibility of using simple multimodality sensors to automatically detect a person's sleep condition. We propose a system which consists of heart-rate, video, and audio sensors, and apply machine learning methods to infer the sleep-awake condition during the time a user spends on the bed. The sleep-awake conditions will be useful information for inferring sleep latency and sleep efficiency, which are critical to both sleep-related diseases and sleep quality measurements. To eliminate possible privacy concerns, we further explore the feasibility of using passive infrared (PIR) sensor instead of video sensor for motion information acquisition. Our experimental results are promising and show the potential use of the proposed novel economical alternative to the traditional medical measurement equipment, with competitive performance on the sleeprelated activity monitoring and the sleep quality measurements.</abstract><pub>IEEE</pub><doi>10.1109/ICDEW.2006.97</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769525716
ispartof 22nd International Conference on Data Engineering Workshops (ICDEW'06), 2006, p.x108-x108
issn
language eng
recordid cdi_ieee_primary_1623901
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cardiac disease
Cardiovascular diseases
Delay
Infrared sensors
Learning systems
Monitoring
Multimodal sensors
Privacy
Sensor systems
Sleep
title Multimodality Sensors for Sleep Quality Monitoring and Logging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multimodality%20Sensors%20for%20Sleep%20Quality%20Monitoring%20and%20Logging&rft.btitle=22nd%20International%20Conference%20on%20Data%20Engineering%20Workshops%20(ICDEW'06)&rft.au=Ya-Ti%20Peng&rft.date=2006&rft.spage=x108&rft.epage=x108&rft.pages=x108-x108&rft.isbn=9780769525716&rft.isbn_list=0769525717&rft_id=info:doi/10.1109/ICDEW.2006.97&rft_dat=%3Cieee_6IE%3E1623901%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1623901&rfr_iscdi=true