Properties and experimental results of fastest linearly independent ternary arithmetic transforms

Two categories of fastest linearly independent ternary arithmetic transforms, which possesses forward and inverse butterfly diagrams with the lowest computational complexity have been identified and their various properties have been presented in this paper. This family is recursively defined and ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2006-04, Vol.53 (4), p.858-866
Hauptverfasser: Falkowski, B.J., Cheng Fu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 866
container_issue 4
container_start_page 858
container_title IEEE transactions on circuits and systems. 1, Fundamental theory and applications
container_volume 53
creator Falkowski, B.J.
Cheng Fu
description Two categories of fastest linearly independent ternary arithmetic transforms, which possesses forward and inverse butterfly diagrams with the lowest computational complexity have been identified and their various properties have been presented in this paper. This family is recursively defined and has consistent formulas relating forward and inverse transform matrices. Computational costs of the calculation for new transforms are also discussed. Some experimental results for standard ternary benchmark functions and comparison with multi-polarity ternary arithmetic transform are also presented.
doi_str_mv 10.1109/TCSI.2005.861890
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1618873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1618873</ieee_id><sourcerecordid>2349977901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-f95b815500123ab300cc493b549812071977bcefd37208cdb92037b1dd2a5f9f3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhosouK7eBS_Bg7euk6RtkqMsfiwsKLieQ9pOsEu3rUkK7r83pYLgJZMwz4R3niS5prCiFNT9bv2-WTGAfCULKhWcJAua5zIFCcXpdM9UKjmT58mF93sApoDTRWLeXD-gCw16Yrqa4Hd8NQfsgmmJQz-2wZPeEmt8QB9I23RoXHskTVfjgPHoAgnoOuOOxLgmfB4wNBUJznTe9u7gL5Mza1qPV791mXw8Pe7WL-n29XmzftimFRNZSK3KSxkTA1DGTckBqipTvIy5JWUgqBKirNDWXDCQVV0qBlyUtK6Zya2yfJnczf8Orv8aY1Z9aHyFbWs67EevmYScqwwiePsP3PdjXKD1WhaCKVGAiBDMUOV67x1aPUQtcUlNQU_C9SRcT8L1LDyO3MwjDSL-4bEpBec_ssF90Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867297607</pqid></control><display><type>article</type><title>Properties and experimental results of fastest linearly independent ternary arithmetic transforms</title><source>IEEE Electronic Library (IEL)</source><creator>Falkowski, B.J. ; Cheng Fu</creator><creatorcontrib>Falkowski, B.J. ; Cheng Fu</creatorcontrib><description>Two categories of fastest linearly independent ternary arithmetic transforms, which possesses forward and inverse butterfly diagrams with the lowest computational complexity have been identified and their various properties have been presented in this paper. This family is recursively defined and has consistent formulas relating forward and inverse transform matrices. Computational costs of the calculation for new transforms are also discussed. Some experimental results for standard ternary benchmark functions and comparison with multi-polarity ternary arithmetic transform are also presented.</description><identifier>ISSN: 1549-8328</identifier><identifier>ISSN: 1057-7122</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2005.861890</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Arithmetic ; Arithmetic algebra ; Computational complexity ; Computational efficiency ; fastest transforms ; linearly independent transform ; Logic circuits ; Logic design ; Logic devices ; Logic functions ; Multivalued logic ; Polynomials ; ternary logic functions</subject><ispartof>IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2006-04, Vol.53 (4), p.858-866</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-f95b815500123ab300cc493b549812071977bcefd37208cdb92037b1dd2a5f9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1618873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1618873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Falkowski, B.J.</creatorcontrib><creatorcontrib>Cheng Fu</creatorcontrib><title>Properties and experimental results of fastest linearly independent ternary arithmetic transforms</title><title>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</title><addtitle>TCSI</addtitle><description>Two categories of fastest linearly independent ternary arithmetic transforms, which possesses forward and inverse butterfly diagrams with the lowest computational complexity have been identified and their various properties have been presented in this paper. This family is recursively defined and has consistent formulas relating forward and inverse transform matrices. Computational costs of the calculation for new transforms are also discussed. Some experimental results for standard ternary benchmark functions and comparison with multi-polarity ternary arithmetic transform are also presented.</description><subject>Algebra</subject><subject>Arithmetic</subject><subject>Arithmetic algebra</subject><subject>Computational complexity</subject><subject>Computational efficiency</subject><subject>fastest transforms</subject><subject>linearly independent transform</subject><subject>Logic circuits</subject><subject>Logic design</subject><subject>Logic devices</subject><subject>Logic functions</subject><subject>Multivalued logic</subject><subject>Polynomials</subject><subject>ternary logic functions</subject><issn>1549-8328</issn><issn>1057-7122</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhosouK7eBS_Bg7euk6RtkqMsfiwsKLieQ9pOsEu3rUkK7r83pYLgJZMwz4R3niS5prCiFNT9bv2-WTGAfCULKhWcJAua5zIFCcXpdM9UKjmT58mF93sApoDTRWLeXD-gCw16Yrqa4Hd8NQfsgmmJQz-2wZPeEmt8QB9I23RoXHskTVfjgPHoAgnoOuOOxLgmfB4wNBUJznTe9u7gL5Mza1qPV791mXw8Pe7WL-n29XmzftimFRNZSK3KSxkTA1DGTckBqipTvIy5JWUgqBKirNDWXDCQVV0qBlyUtK6Zya2yfJnczf8Orv8aY1Z9aHyFbWs67EevmYScqwwiePsP3PdjXKD1WhaCKVGAiBDMUOV67x1aPUQtcUlNQU_C9SRcT8L1LDyO3MwjDSL-4bEpBec_ssF90Q</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Falkowski, B.J.</creator><creator>Cheng Fu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060401</creationdate><title>Properties and experimental results of fastest linearly independent ternary arithmetic transforms</title><author>Falkowski, B.J. ; Cheng Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-f95b815500123ab300cc493b549812071977bcefd37208cdb92037b1dd2a5f9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebra</topic><topic>Arithmetic</topic><topic>Arithmetic algebra</topic><topic>Computational complexity</topic><topic>Computational efficiency</topic><topic>fastest transforms</topic><topic>linearly independent transform</topic><topic>Logic circuits</topic><topic>Logic design</topic><topic>Logic devices</topic><topic>Logic functions</topic><topic>Multivalued logic</topic><topic>Polynomials</topic><topic>ternary logic functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falkowski, B.J.</creatorcontrib><creatorcontrib>Cheng Fu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Falkowski, B.J.</au><au>Cheng Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties and experimental results of fastest linearly independent ternary arithmetic transforms</atitle><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle><stitle>TCSI</stitle><date>2006-04-01</date><risdate>2006</risdate><volume>53</volume><issue>4</issue><spage>858</spage><epage>866</epage><pages>858-866</pages><issn>1549-8328</issn><issn>1057-7122</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Two categories of fastest linearly independent ternary arithmetic transforms, which possesses forward and inverse butterfly diagrams with the lowest computational complexity have been identified and their various properties have been presented in this paper. This family is recursively defined and has consistent formulas relating forward and inverse transform matrices. Computational costs of the calculation for new transforms are also discussed. Some experimental results for standard ternary benchmark functions and comparison with multi-polarity ternary arithmetic transform are also presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2005.861890</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2006-04, Vol.53 (4), p.858-866
issn 1549-8328
1057-7122
1558-0806
language eng
recordid cdi_ieee_primary_1618873
source IEEE Electronic Library (IEL)
subjects Algebra
Arithmetic
Arithmetic algebra
Computational complexity
Computational efficiency
fastest transforms
linearly independent transform
Logic circuits
Logic design
Logic devices
Logic functions
Multivalued logic
Polynomials
ternary logic functions
title Properties and experimental results of fastest linearly independent ternary arithmetic transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20and%20experimental%20results%20of%20fastest%20linearly%20independent%20ternary%20arithmetic%20transforms&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%201,%20Fundamental%20theory%20and%20applications&rft.au=Falkowski,%20B.J.&rft.date=2006-04-01&rft.volume=53&rft.issue=4&rft.spage=858&rft.epage=866&rft.pages=858-866&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2005.861890&rft_dat=%3Cproquest_RIE%3E2349977901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867297607&rft_id=info:pmid/&rft_ieee_id=1618873&rfr_iscdi=true