Properties and experimental results of fastest linearly independent ternary arithmetic transforms
Two categories of fastest linearly independent ternary arithmetic transforms, which possesses forward and inverse butterfly diagrams with the lowest computational complexity have been identified and their various properties have been presented in this paper. This family is recursively defined and ha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2006-04, Vol.53 (4), p.858-866 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 866 |
---|---|
container_issue | 4 |
container_start_page | 858 |
container_title | IEEE transactions on circuits and systems. 1, Fundamental theory and applications |
container_volume | 53 |
creator | Falkowski, B.J. Cheng Fu |
description | Two categories of fastest linearly independent ternary arithmetic transforms, which possesses forward and inverse butterfly diagrams with the lowest computational complexity have been identified and their various properties have been presented in this paper. This family is recursively defined and has consistent formulas relating forward and inverse transform matrices. Computational costs of the calculation for new transforms are also discussed. Some experimental results for standard ternary benchmark functions and comparison with multi-polarity ternary arithmetic transform are also presented. |
doi_str_mv | 10.1109/TCSI.2005.861890 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1618873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1618873</ieee_id><sourcerecordid>2349977901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-f95b815500123ab300cc493b549812071977bcefd37208cdb92037b1dd2a5f9f3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhosouK7eBS_Bg7euk6RtkqMsfiwsKLieQ9pOsEu3rUkK7r83pYLgJZMwz4R3niS5prCiFNT9bv2-WTGAfCULKhWcJAua5zIFCcXpdM9UKjmT58mF93sApoDTRWLeXD-gCw16Yrqa4Hd8NQfsgmmJQz-2wZPeEmt8QB9I23RoXHskTVfjgPHoAgnoOuOOxLgmfB4wNBUJznTe9u7gL5Mza1qPV791mXw8Pe7WL-n29XmzftimFRNZSK3KSxkTA1DGTckBqipTvIy5JWUgqBKirNDWXDCQVV0qBlyUtK6Zya2yfJnczf8Orv8aY1Z9aHyFbWs67EevmYScqwwiePsP3PdjXKD1WhaCKVGAiBDMUOV67x1aPUQtcUlNQU_C9SRcT8L1LDyO3MwjDSL-4bEpBec_ssF90Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867297607</pqid></control><display><type>article</type><title>Properties and experimental results of fastest linearly independent ternary arithmetic transforms</title><source>IEEE Electronic Library (IEL)</source><creator>Falkowski, B.J. ; Cheng Fu</creator><creatorcontrib>Falkowski, B.J. ; Cheng Fu</creatorcontrib><description>Two categories of fastest linearly independent ternary arithmetic transforms, which possesses forward and inverse butterfly diagrams with the lowest computational complexity have been identified and their various properties have been presented in this paper. This family is recursively defined and has consistent formulas relating forward and inverse transform matrices. Computational costs of the calculation for new transforms are also discussed. Some experimental results for standard ternary benchmark functions and comparison with multi-polarity ternary arithmetic transform are also presented.</description><identifier>ISSN: 1549-8328</identifier><identifier>ISSN: 1057-7122</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2005.861890</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Arithmetic ; Arithmetic algebra ; Computational complexity ; Computational efficiency ; fastest transforms ; linearly independent transform ; Logic circuits ; Logic design ; Logic devices ; Logic functions ; Multivalued logic ; Polynomials ; ternary logic functions</subject><ispartof>IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2006-04, Vol.53 (4), p.858-866</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-f95b815500123ab300cc493b549812071977bcefd37208cdb92037b1dd2a5f9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1618873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1618873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Falkowski, B.J.</creatorcontrib><creatorcontrib>Cheng Fu</creatorcontrib><title>Properties and experimental results of fastest linearly independent ternary arithmetic transforms</title><title>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</title><addtitle>TCSI</addtitle><description>Two categories of fastest linearly independent ternary arithmetic transforms, which possesses forward and inverse butterfly diagrams with the lowest computational complexity have been identified and their various properties have been presented in this paper. This family is recursively defined and has consistent formulas relating forward and inverse transform matrices. Computational costs of the calculation for new transforms are also discussed. Some experimental results for standard ternary benchmark functions and comparison with multi-polarity ternary arithmetic transform are also presented.</description><subject>Algebra</subject><subject>Arithmetic</subject><subject>Arithmetic algebra</subject><subject>Computational complexity</subject><subject>Computational efficiency</subject><subject>fastest transforms</subject><subject>linearly independent transform</subject><subject>Logic circuits</subject><subject>Logic design</subject><subject>Logic devices</subject><subject>Logic functions</subject><subject>Multivalued logic</subject><subject>Polynomials</subject><subject>ternary logic functions</subject><issn>1549-8328</issn><issn>1057-7122</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhosouK7eBS_Bg7euk6RtkqMsfiwsKLieQ9pOsEu3rUkK7r83pYLgJZMwz4R3niS5prCiFNT9bv2-WTGAfCULKhWcJAua5zIFCcXpdM9UKjmT58mF93sApoDTRWLeXD-gCw16Yrqa4Hd8NQfsgmmJQz-2wZPeEmt8QB9I23RoXHskTVfjgPHoAgnoOuOOxLgmfB4wNBUJznTe9u7gL5Mza1qPV791mXw8Pe7WL-n29XmzftimFRNZSK3KSxkTA1DGTckBqipTvIy5JWUgqBKirNDWXDCQVV0qBlyUtK6Zya2yfJnczf8Orv8aY1Z9aHyFbWs67EevmYScqwwiePsP3PdjXKD1WhaCKVGAiBDMUOV67x1aPUQtcUlNQU_C9SRcT8L1LDyO3MwjDSL-4bEpBec_ssF90Q</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Falkowski, B.J.</creator><creator>Cheng Fu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060401</creationdate><title>Properties and experimental results of fastest linearly independent ternary arithmetic transforms</title><author>Falkowski, B.J. ; Cheng Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-f95b815500123ab300cc493b549812071977bcefd37208cdb92037b1dd2a5f9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebra</topic><topic>Arithmetic</topic><topic>Arithmetic algebra</topic><topic>Computational complexity</topic><topic>Computational efficiency</topic><topic>fastest transforms</topic><topic>linearly independent transform</topic><topic>Logic circuits</topic><topic>Logic design</topic><topic>Logic devices</topic><topic>Logic functions</topic><topic>Multivalued logic</topic><topic>Polynomials</topic><topic>ternary logic functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falkowski, B.J.</creatorcontrib><creatorcontrib>Cheng Fu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Falkowski, B.J.</au><au>Cheng Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties and experimental results of fastest linearly independent ternary arithmetic transforms</atitle><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle><stitle>TCSI</stitle><date>2006-04-01</date><risdate>2006</risdate><volume>53</volume><issue>4</issue><spage>858</spage><epage>866</epage><pages>858-866</pages><issn>1549-8328</issn><issn>1057-7122</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Two categories of fastest linearly independent ternary arithmetic transforms, which possesses forward and inverse butterfly diagrams with the lowest computational complexity have been identified and their various properties have been presented in this paper. This family is recursively defined and has consistent formulas relating forward and inverse transform matrices. Computational costs of the calculation for new transforms are also discussed. Some experimental results for standard ternary benchmark functions and comparison with multi-polarity ternary arithmetic transform are also presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2005.861890</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2006-04, Vol.53 (4), p.858-866 |
issn | 1549-8328 1057-7122 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_1618873 |
source | IEEE Electronic Library (IEL) |
subjects | Algebra Arithmetic Arithmetic algebra Computational complexity Computational efficiency fastest transforms linearly independent transform Logic circuits Logic design Logic devices Logic functions Multivalued logic Polynomials ternary logic functions |
title | Properties and experimental results of fastest linearly independent ternary arithmetic transforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20and%20experimental%20results%20of%20fastest%20linearly%20independent%20ternary%20arithmetic%20transforms&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%201,%20Fundamental%20theory%20and%20applications&rft.au=Falkowski,%20B.J.&rft.date=2006-04-01&rft.volume=53&rft.issue=4&rft.spage=858&rft.epage=866&rft.pages=858-866&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2005.861890&rft_dat=%3Cproquest_RIE%3E2349977901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867297607&rft_id=info:pmid/&rft_ieee_id=1618873&rfr_iscdi=true |