Some elliptic traveling wave solutions to the Novikov-Veselov equation
An approach is proposed to obtain some ex art explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NTVE[psi(x,y,t)] = 0). An expansion ansatz psi rarr g = Sigma 2 j=0 a j f j is used to reduce the NVE to the ordinary differential equation (f) 2 = R(f), where R(f) is a f...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | |
container_start_page | 177 |
container_title | |
container_volume | |
creator | Nickel, J. Schurmann, H.W. Serov, V.S. |
description | An approach is proposed to obtain some ex art explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NTVE[psi(x,y,t)] = 0). An expansion ansatz psi rarr g = Sigma 2 j=0 a j f j is used to reduce the NVE to the ordinary differential equation (f) 2 = R(f), where R(f) is a fourth degree polynomial in f. The well-known solutions of (f) 2 = R(f) lead to periodic and solitary wave like solutions psi. Subject, to certain conditions containing the parameters of the NVE and of the ansatz psi rarr g the periodic solutions psi can be used as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme |
doi_str_mv | 10.1109/DD.2005.204892 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1613399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1613399</ieee_id><sourcerecordid>1613399</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9816679cd513ac98235a7c69371cafc0fa0ac110a5bcb09f21839d48f9e2f55a3</originalsourceid><addsrcrecordid>eNotj0FLAzEUhAMiqLVXL17yB7a-JJvsvqO01gpFDxavJU1fNJo2dZOu-O9d0TnMfIdhYBi7EjARAvBmNptIAD1Y3aI8YRcajRYgajBnbJzzOwxSqNDAOZs_px1xijEcSnC8dLanGPav_GsAnlM8lpD2mZfEyxvxx9SHj9RXL5Qppp7T59H-Fi7Zqbcx0_g_R2w1v1tNF9Xy6f5herusAkKpsBXGNOi2WijrsJVK28YZVI1w1jvwFqwbPli9cRtAL0WrcFu3Hkl6ra0aseu_2UBE60MXdrb7XgsjlEJUPx4KSWU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Some elliptic traveling wave solutions to the Novikov-Veselov equation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nickel, J. ; Schurmann, H.W. ; Serov, V.S.</creator><creatorcontrib>Nickel, J. ; Schurmann, H.W. ; Serov, V.S.</creatorcontrib><description>An approach is proposed to obtain some ex art explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NTVE[psi(x,y,t)] = 0). An expansion ansatz psi rarr g = Sigma 2 j=0 a j f j is used to reduce the NVE to the ordinary differential equation (f) 2 = R(f), where R(f) is a fourth degree polynomial in f. The well-known solutions of (f) 2 = R(f) lead to periodic and solitary wave like solutions psi. Subject, to certain conditions containing the parameters of the NVE and of the ansatz psi rarr g the periodic solutions psi can be used as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme</description><identifier>ISBN: 5965101406</identifier><identifier>ISBN: 9785965101405</identifier><identifier>DOI: 10.1109/DD.2005.204892</identifier><language>eng</language><publisher>IEEE</publisher><subject>Differential equations ; Geometrical optics ; Inverse problems ; Mathematics ; Maxwell equations ; Nickel ; Nonlinear equations ; Optical surface waves ; Physics ; Polynomials</subject><ispartof>Proceedings of the International Conference Days on Diffraction-2005, 2005, p.177-186</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1613399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1613399$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nickel, J.</creatorcontrib><creatorcontrib>Schurmann, H.W.</creatorcontrib><creatorcontrib>Serov, V.S.</creatorcontrib><title>Some elliptic traveling wave solutions to the Novikov-Veselov equation</title><title>Proceedings of the International Conference Days on Diffraction-2005</title><addtitle>DD</addtitle><description>An approach is proposed to obtain some ex art explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NTVE[psi(x,y,t)] = 0). An expansion ansatz psi rarr g = Sigma 2 j=0 a j f j is used to reduce the NVE to the ordinary differential equation (f) 2 = R(f), where R(f) is a fourth degree polynomial in f. The well-known solutions of (f) 2 = R(f) lead to periodic and solitary wave like solutions psi. Subject, to certain conditions containing the parameters of the NVE and of the ansatz psi rarr g the periodic solutions psi can be used as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme</description><subject>Differential equations</subject><subject>Geometrical optics</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Maxwell equations</subject><subject>Nickel</subject><subject>Nonlinear equations</subject><subject>Optical surface waves</subject><subject>Physics</subject><subject>Polynomials</subject><isbn>5965101406</isbn><isbn>9785965101405</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLAzEUhAMiqLVXL17yB7a-JJvsvqO01gpFDxavJU1fNJo2dZOu-O9d0TnMfIdhYBi7EjARAvBmNptIAD1Y3aI8YRcajRYgajBnbJzzOwxSqNDAOZs_px1xijEcSnC8dLanGPav_GsAnlM8lpD2mZfEyxvxx9SHj9RXL5Qppp7T59H-Fi7Zqbcx0_g_R2w1v1tNF9Xy6f5herusAkKpsBXGNOi2WijrsJVK28YZVI1w1jvwFqwbPli9cRtAL0WrcFu3Hkl6ra0aseu_2UBE60MXdrb7XgsjlEJUPx4KSWU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Nickel, J.</creator><creator>Schurmann, H.W.</creator><creator>Serov, V.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Some elliptic traveling wave solutions to the Novikov-Veselov equation</title><author>Nickel, J. ; Schurmann, H.W. ; Serov, V.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9816679cd513ac98235a7c69371cafc0fa0ac110a5bcb09f21839d48f9e2f55a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Differential equations</topic><topic>Geometrical optics</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Maxwell equations</topic><topic>Nickel</topic><topic>Nonlinear equations</topic><topic>Optical surface waves</topic><topic>Physics</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Nickel, J.</creatorcontrib><creatorcontrib>Schurmann, H.W.</creatorcontrib><creatorcontrib>Serov, V.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nickel, J.</au><au>Schurmann, H.W.</au><au>Serov, V.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Some elliptic traveling wave solutions to the Novikov-Veselov equation</atitle><btitle>Proceedings of the International Conference Days on Diffraction-2005</btitle><stitle>DD</stitle><date>2005</date><risdate>2005</risdate><spage>177</spage><epage>186</epage><pages>177-186</pages><isbn>5965101406</isbn><isbn>9785965101405</isbn><abstract>An approach is proposed to obtain some ex art explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NTVE[psi(x,y,t)] = 0). An expansion ansatz psi rarr g = Sigma 2 j=0 a j f j is used to reduce the NVE to the ordinary differential equation (f) 2 = R(f), where R(f) is a fourth degree polynomial in f. The well-known solutions of (f) 2 = R(f) lead to periodic and solitary wave like solutions psi. Subject, to certain conditions containing the parameters of the NVE and of the ansatz psi rarr g the periodic solutions psi can be used as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme</abstract><pub>IEEE</pub><doi>10.1109/DD.2005.204892</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 5965101406 |
ispartof | Proceedings of the International Conference Days on Diffraction-2005, 2005, p.177-186 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1613399 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Differential equations Geometrical optics Inverse problems Mathematics Maxwell equations Nickel Nonlinear equations Optical surface waves Physics Polynomials |
title | Some elliptic traveling wave solutions to the Novikov-Veselov equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Some%20elliptic%20traveling%20wave%20solutions%20to%20the%20Novikov-Veselov%20equation&rft.btitle=Proceedings%20of%20the%20International%20Conference%20Days%20on%20Diffraction-2005&rft.au=Nickel,%20J.&rft.date=2005&rft.spage=177&rft.epage=186&rft.pages=177-186&rft.isbn=5965101406&rft.isbn_list=9785965101405&rft_id=info:doi/10.1109/DD.2005.204892&rft_dat=%3Cieee_6IE%3E1613399%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1613399&rfr_iscdi=true |