Some elliptic traveling wave solutions to the Novikov-Veselov equation

An approach is proposed to obtain some ex art explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NTVE[psi(x,y,t)] = 0). An expansion ansatz psi rarr g = Sigma 2 j=0 a j f j is used to reduce the NVE to the ordinary differential equation (f) 2 = R(f), where R(f) is a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nickel, J., Schurmann, H.W., Serov, V.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue
container_start_page 177
container_title
container_volume
creator Nickel, J.
Schurmann, H.W.
Serov, V.S.
description An approach is proposed to obtain some ex art explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NTVE[psi(x,y,t)] = 0). An expansion ansatz psi rarr g = Sigma 2 j=0 a j f j is used to reduce the NVE to the ordinary differential equation (f) 2 = R(f), where R(f) is a fourth degree polynomial in f. The well-known solutions of (f) 2 = R(f) lead to periodic and solitary wave like solutions psi. Subject, to certain conditions containing the parameters of the NVE and of the ansatz psi rarr g the periodic solutions psi can be used as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme
doi_str_mv 10.1109/DD.2005.204892
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1613399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1613399</ieee_id><sourcerecordid>1613399</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9816679cd513ac98235a7c69371cafc0fa0ac110a5bcb09f21839d48f9e2f55a3</originalsourceid><addsrcrecordid>eNotj0FLAzEUhAMiqLVXL17yB7a-JJvsvqO01gpFDxavJU1fNJo2dZOu-O9d0TnMfIdhYBi7EjARAvBmNptIAD1Y3aI8YRcajRYgajBnbJzzOwxSqNDAOZs_px1xijEcSnC8dLanGPav_GsAnlM8lpD2mZfEyxvxx9SHj9RXL5Qppp7T59H-Fi7Zqbcx0_g_R2w1v1tNF9Xy6f5herusAkKpsBXGNOi2WijrsJVK28YZVI1w1jvwFqwbPli9cRtAL0WrcFu3Hkl6ra0aseu_2UBE60MXdrb7XgsjlEJUPx4KSWU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Some elliptic traveling wave solutions to the Novikov-Veselov equation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nickel, J. ; Schurmann, H.W. ; Serov, V.S.</creator><creatorcontrib>Nickel, J. ; Schurmann, H.W. ; Serov, V.S.</creatorcontrib><description>An approach is proposed to obtain some ex art explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NTVE[psi(x,y,t)] = 0). An expansion ansatz psi rarr g = Sigma 2 j=0 a j f j is used to reduce the NVE to the ordinary differential equation (f) 2 = R(f), where R(f) is a fourth degree polynomial in f. The well-known solutions of (f) 2 = R(f) lead to periodic and solitary wave like solutions psi. Subject, to certain conditions containing the parameters of the NVE and of the ansatz psi rarr g the periodic solutions psi can be used as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme</description><identifier>ISBN: 5965101406</identifier><identifier>ISBN: 9785965101405</identifier><identifier>DOI: 10.1109/DD.2005.204892</identifier><language>eng</language><publisher>IEEE</publisher><subject>Differential equations ; Geometrical optics ; Inverse problems ; Mathematics ; Maxwell equations ; Nickel ; Nonlinear equations ; Optical surface waves ; Physics ; Polynomials</subject><ispartof>Proceedings of the International Conference Days on Diffraction-2005, 2005, p.177-186</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1613399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1613399$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nickel, J.</creatorcontrib><creatorcontrib>Schurmann, H.W.</creatorcontrib><creatorcontrib>Serov, V.S.</creatorcontrib><title>Some elliptic traveling wave solutions to the Novikov-Veselov equation</title><title>Proceedings of the International Conference Days on Diffraction-2005</title><addtitle>DD</addtitle><description>An approach is proposed to obtain some ex art explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NTVE[psi(x,y,t)] = 0). An expansion ansatz psi rarr g = Sigma 2 j=0 a j f j is used to reduce the NVE to the ordinary differential equation (f) 2 = R(f), where R(f) is a fourth degree polynomial in f. The well-known solutions of (f) 2 = R(f) lead to periodic and solitary wave like solutions psi. Subject, to certain conditions containing the parameters of the NVE and of the ansatz psi rarr g the periodic solutions psi can be used as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme</description><subject>Differential equations</subject><subject>Geometrical optics</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Maxwell equations</subject><subject>Nickel</subject><subject>Nonlinear equations</subject><subject>Optical surface waves</subject><subject>Physics</subject><subject>Polynomials</subject><isbn>5965101406</isbn><isbn>9785965101405</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLAzEUhAMiqLVXL17yB7a-JJvsvqO01gpFDxavJU1fNJo2dZOu-O9d0TnMfIdhYBi7EjARAvBmNptIAD1Y3aI8YRcajRYgajBnbJzzOwxSqNDAOZs_px1xijEcSnC8dLanGPav_GsAnlM8lpD2mZfEyxvxx9SHj9RXL5Qppp7T59H-Fi7Zqbcx0_g_R2w1v1tNF9Xy6f5herusAkKpsBXGNOi2WijrsJVK28YZVI1w1jvwFqwbPli9cRtAL0WrcFu3Hkl6ra0aseu_2UBE60MXdrb7XgsjlEJUPx4KSWU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Nickel, J.</creator><creator>Schurmann, H.W.</creator><creator>Serov, V.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Some elliptic traveling wave solutions to the Novikov-Veselov equation</title><author>Nickel, J. ; Schurmann, H.W. ; Serov, V.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9816679cd513ac98235a7c69371cafc0fa0ac110a5bcb09f21839d48f9e2f55a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Differential equations</topic><topic>Geometrical optics</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Maxwell equations</topic><topic>Nickel</topic><topic>Nonlinear equations</topic><topic>Optical surface waves</topic><topic>Physics</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Nickel, J.</creatorcontrib><creatorcontrib>Schurmann, H.W.</creatorcontrib><creatorcontrib>Serov, V.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nickel, J.</au><au>Schurmann, H.W.</au><au>Serov, V.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Some elliptic traveling wave solutions to the Novikov-Veselov equation</atitle><btitle>Proceedings of the International Conference Days on Diffraction-2005</btitle><stitle>DD</stitle><date>2005</date><risdate>2005</risdate><spage>177</spage><epage>186</epage><pages>177-186</pages><isbn>5965101406</isbn><isbn>9785965101405</isbn><abstract>An approach is proposed to obtain some ex art explicit solutions in terms of elliptic functions to the Novikov-Veselov equation (NTVE[psi(x,y,t)] = 0). An expansion ansatz psi rarr g = Sigma 2 j=0 a j f j is used to reduce the NVE to the ordinary differential equation (f) 2 = R(f), where R(f) is a fourth degree polynomial in f. The well-known solutions of (f) 2 = R(f) lead to periodic and solitary wave like solutions psi. Subject, to certain conditions containing the parameters of the NVE and of the ansatz psi rarr g the periodic solutions psi can be used as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme</abstract><pub>IEEE</pub><doi>10.1109/DD.2005.204892</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 5965101406
ispartof Proceedings of the International Conference Days on Diffraction-2005, 2005, p.177-186
issn
language eng
recordid cdi_ieee_primary_1613399
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Differential equations
Geometrical optics
Inverse problems
Mathematics
Maxwell equations
Nickel
Nonlinear equations
Optical surface waves
Physics
Polynomials
title Some elliptic traveling wave solutions to the Novikov-Veselov equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Some%20elliptic%20traveling%20wave%20solutions%20to%20the%20Novikov-Veselov%20equation&rft.btitle=Proceedings%20of%20the%20International%20Conference%20Days%20on%20Diffraction-2005&rft.au=Nickel,%20J.&rft.date=2005&rft.spage=177&rft.epage=186&rft.pages=177-186&rft.isbn=5965101406&rft.isbn_list=9785965101405&rft_id=info:doi/10.1109/DD.2005.204892&rft_dat=%3Cieee_6IE%3E1613399%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1613399&rfr_iscdi=true