Improving the quality of degraded document images

It is common for libraries to provide public access to historical and ancient document image collections. It is common for such document images to require specialized processing in order to remove background noise and become more legible. In this paper, we propose a hybrid binarization approach for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kavallieratou, E., Stamatatos, E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue
container_start_page 10 pp.
container_title
container_volume
creator Kavallieratou, E.
Stamatatos, E.
description It is common for libraries to provide public access to historical and ancient document image collections. It is common for such document images to require specialized processing in order to remove background noise and become more legible. In this paper, we propose a hybrid binarization approach for improving the quality of old documents using a combination of global and local thresholding. First, a global thresholding technique specifically designed for old document images is applied to the entire image. Then, the image areas that still contain background noise are detected and the same technique is re-applied to each area separately. Hence, we achieve better adaptability of the algorithm in cases where various kinds of noise coexist in different areas of the same image while avoiding the computational and time cost of applying a local thresholding in the entire image. Evaluation results based on a collection of historical document images indicate that the proposed approach is effective in removing background noise and improving the quality of degraded documents while documents already in good condition are not affected
doi_str_mv 10.1109/DIAL.2006.23
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1612976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1612976</ieee_id><sourcerecordid>1612976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-27ca0a28c8decbc771e565a7dc5c67bf8d8b5e5d83e6d3fe0dfdd6d8b385fc033</originalsourceid><addsrcrecordid>eNotjUtLw0AURgdEUGt37tzMH0icO7fzyLLUVyDgpl2Xydw7MdI0NUmF_nsD-m0OnMX5hHgAlQOo4um5XFe5VsrmGq_EnXK2MNog-BuxHMcvNQ-LlYXVrYCyOw39T3ts5PTJ8vscDu10kX2SxM0QiElSH88dHyfZdqHh8V5cp3AYefnPhdi9vmw371n18VZu1lUWNfgp0y4GFbSPnjjW0TlgY01wFE20rk6efG3YkEe2hIkVJSI7S_QmRYW4EI9_3ZaZ96dhfh8ue7CgC2fxF3dAQpA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving the quality of degraded document images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kavallieratou, E. ; Stamatatos, E.</creator><creatorcontrib>Kavallieratou, E. ; Stamatatos, E.</creatorcontrib><description>It is common for libraries to provide public access to historical and ancient document image collections. It is common for such document images to require specialized processing in order to remove background noise and become more legible. In this paper, we propose a hybrid binarization approach for improving the quality of old documents using a combination of global and local thresholding. First, a global thresholding technique specifically designed for old document images is applied to the entire image. Then, the image areas that still contain background noise are detected and the same technique is re-applied to each area separately. Hence, we achieve better adaptability of the algorithm in cases where various kinds of noise coexist in different areas of the same image while avoiding the computational and time cost of applying a local thresholding in the entire image. Evaluation results based on a collection of historical document images indicate that the proposed approach is effective in removing background noise and improving the quality of degraded documents while documents already in good condition are not affected</description><identifier>ISBN: 0769525318</identifier><identifier>ISBN: 9780769525310</identifier><identifier>DOI: 10.1109/DIAL.2006.23</identifier><language>eng</language><publisher>IEEE</publisher><subject>Background noise ; Capacitive sensors ; Computational efficiency ; Cultural differences ; Degradation ; Image analysis ; Lighting ; Pixel ; Software libraries ; Systems engineering and theory</subject><ispartof>Second International Conference on Document Image Analysis for Libraries (DIAL'06), 2006, p.10 pp.-349</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-27ca0a28c8decbc771e565a7dc5c67bf8d8b5e5d83e6d3fe0dfdd6d8b385fc033</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1612976$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1612976$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kavallieratou, E.</creatorcontrib><creatorcontrib>Stamatatos, E.</creatorcontrib><title>Improving the quality of degraded document images</title><title>Second International Conference on Document Image Analysis for Libraries (DIAL'06)</title><addtitle>DIAL</addtitle><description>It is common for libraries to provide public access to historical and ancient document image collections. It is common for such document images to require specialized processing in order to remove background noise and become more legible. In this paper, we propose a hybrid binarization approach for improving the quality of old documents using a combination of global and local thresholding. First, a global thresholding technique specifically designed for old document images is applied to the entire image. Then, the image areas that still contain background noise are detected and the same technique is re-applied to each area separately. Hence, we achieve better adaptability of the algorithm in cases where various kinds of noise coexist in different areas of the same image while avoiding the computational and time cost of applying a local thresholding in the entire image. Evaluation results based on a collection of historical document images indicate that the proposed approach is effective in removing background noise and improving the quality of degraded documents while documents already in good condition are not affected</description><subject>Background noise</subject><subject>Capacitive sensors</subject><subject>Computational efficiency</subject><subject>Cultural differences</subject><subject>Degradation</subject><subject>Image analysis</subject><subject>Lighting</subject><subject>Pixel</subject><subject>Software libraries</subject><subject>Systems engineering and theory</subject><isbn>0769525318</isbn><isbn>9780769525310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjUtLw0AURgdEUGt37tzMH0icO7fzyLLUVyDgpl2Xydw7MdI0NUmF_nsD-m0OnMX5hHgAlQOo4um5XFe5VsrmGq_EnXK2MNog-BuxHMcvNQ-LlYXVrYCyOw39T3ts5PTJ8vscDu10kX2SxM0QiElSH88dHyfZdqHh8V5cp3AYefnPhdi9vmw371n18VZu1lUWNfgp0y4GFbSPnjjW0TlgY01wFE20rk6efG3YkEe2hIkVJSI7S_QmRYW4EI9_3ZaZ96dhfh8ue7CgC2fxF3dAQpA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kavallieratou, E.</creator><creator>Stamatatos, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Improving the quality of degraded document images</title><author>Kavallieratou, E. ; Stamatatos, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-27ca0a28c8decbc771e565a7dc5c67bf8d8b5e5d83e6d3fe0dfdd6d8b385fc033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Background noise</topic><topic>Capacitive sensors</topic><topic>Computational efficiency</topic><topic>Cultural differences</topic><topic>Degradation</topic><topic>Image analysis</topic><topic>Lighting</topic><topic>Pixel</topic><topic>Software libraries</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Kavallieratou, E.</creatorcontrib><creatorcontrib>Stamatatos, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kavallieratou, E.</au><au>Stamatatos, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving the quality of degraded document images</atitle><btitle>Second International Conference on Document Image Analysis for Libraries (DIAL'06)</btitle><stitle>DIAL</stitle><date>2006</date><risdate>2006</risdate><spage>10 pp.</spage><epage>349</epage><pages>10 pp.-349</pages><isbn>0769525318</isbn><isbn>9780769525310</isbn><abstract>It is common for libraries to provide public access to historical and ancient document image collections. It is common for such document images to require specialized processing in order to remove background noise and become more legible. In this paper, we propose a hybrid binarization approach for improving the quality of old documents using a combination of global and local thresholding. First, a global thresholding technique specifically designed for old document images is applied to the entire image. Then, the image areas that still contain background noise are detected and the same technique is re-applied to each area separately. Hence, we achieve better adaptability of the algorithm in cases where various kinds of noise coexist in different areas of the same image while avoiding the computational and time cost of applying a local thresholding in the entire image. Evaluation results based on a collection of historical document images indicate that the proposed approach is effective in removing background noise and improving the quality of degraded documents while documents already in good condition are not affected</abstract><pub>IEEE</pub><doi>10.1109/DIAL.2006.23</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769525318
ispartof Second International Conference on Document Image Analysis for Libraries (DIAL'06), 2006, p.10 pp.-349
issn
language eng
recordid cdi_ieee_primary_1612976
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Background noise
Capacitive sensors
Computational efficiency
Cultural differences
Degradation
Image analysis
Lighting
Pixel
Software libraries
Systems engineering and theory
title Improving the quality of degraded document images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20the%20quality%20of%20degraded%20document%20images&rft.btitle=Second%20International%20Conference%20on%20Document%20Image%20Analysis%20for%20Libraries%20(DIAL'06)&rft.au=Kavallieratou,%20E.&rft.date=2006&rft.spage=10%20pp.&rft.epage=349&rft.pages=10%20pp.-349&rft.isbn=0769525318&rft.isbn_list=9780769525310&rft_id=info:doi/10.1109/DIAL.2006.23&rft_dat=%3Cieee_6IE%3E1612976%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1612976&rfr_iscdi=true