Distributed quasi-Monte Carlo algorithm for option pricing on HNOWs using mpC

Monte Carlo (MC) simulation is one of the popular approaches for approximating the value of options and other derivative securities due to the absence of straightforward closed form solutions for many financial models. However, the slow convergence rate, O(N/sup - 1/2/) for N number of samples of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gong Chen, Thulasiraman, P., Thulasiram, R.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue
container_start_page 8 pp.
container_title
container_volume
creator Gong Chen
Thulasiraman, P.
Thulasiram, R.K.
description Monte Carlo (MC) simulation is one of the popular approaches for approximating the value of options and other derivative securities due to the absence of straightforward closed form solutions for many financial models. However, the slow convergence rate, O(N/sup - 1/2/) for N number of samples of the MC method has motivated research in quasi Monte-Carlo (QMC) techniques. QMC methods use low discrepancy (LD) sequences that provide faster, more accurate results than MC methods. In this paper, we focus on the parallelization of the QMC method on a heterogeneous network of workstations (HNOWs) for option pricing. HNOWs are machines with different processing capabilities and have distinct execution time for the same task. It is therefore important to allocate and schedule the tasks depending on the performance and resources of these machines. We present an adaptive, distributed QMC algorithm for option pricing, taking into account the performances of both processors and communications. The algorithm distributes data and computations based on the architectural features of the available processors at run time. We implement the algorithm using mpC, an extension of ANSI C language for parallel computation on heterogeneous networks. We compare and analyze the performance results with different parallel implementations. The results of our algorithm demonstrate a good performance on heterogenous parallel platforms.
doi_str_mv 10.1109/ANSS.2006.20
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_1612848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1612848</ieee_id><sourcerecordid>31157022</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-4c457e4c027e757cd03ae393f4c33ef58551e10995037f7cda5a2a411eead50b3</originalsourceid><addsrcrecordid>eNotT7tOw0AQPPGQCCEdHc1VdA679_DZZRQeQcqjCIh01sVZh0O2z_jsgr_HKEyxO6sZjXYYu0WYIkL6MFtvt1MBEA_jjI2ElBghmN05uwYTp1ponSYXbISQQCQU7q7YJIQvGKA0mliP2OrRha51-76jA__ubXDRytcd8bltS89tefSt6z4rXviW-6ZzvuZN63JXH_lAF-vNR-B9-DurZn7DLgtbBpr87zF7f356my-i5ebldT5bRk5A3EUqV9qQykEYMtrkB5CWZCoLlUtJhU60RhoKphqkKQbdaiusQiSyBw17OWb3p9ym9d89hS6rXMipLG1Nvg-ZRNQGhBiMdyejI6JseLyy7U-GMYpEJfIXOFhcKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>31157022</pqid></control><display><type>conference_proceeding</type><title>Distributed quasi-Monte Carlo algorithm for option pricing on HNOWs using mpC</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gong Chen ; Thulasiraman, P. ; Thulasiram, R.K.</creator><creatorcontrib>Gong Chen ; Thulasiraman, P. ; Thulasiram, R.K.</creatorcontrib><description>Monte Carlo (MC) simulation is one of the popular approaches for approximating the value of options and other derivative securities due to the absence of straightforward closed form solutions for many financial models. However, the slow convergence rate, O(N/sup - 1/2/) for N number of samples of the MC method has motivated research in quasi Monte-Carlo (QMC) techniques. QMC methods use low discrepancy (LD) sequences that provide faster, more accurate results than MC methods. In this paper, we focus on the parallelization of the QMC method on a heterogeneous network of workstations (HNOWs) for option pricing. HNOWs are machines with different processing capabilities and have distinct execution time for the same task. It is therefore important to allocate and schedule the tasks depending on the performance and resources of these machines. We present an adaptive, distributed QMC algorithm for option pricing, taking into account the performances of both processors and communications. The algorithm distributes data and computations based on the architectural features of the available processors at run time. We implement the algorithm using mpC, an extension of ANSI C language for parallel computation on heterogeneous networks. We compare and analyze the performance results with different parallel implementations. The results of our algorithm demonstrate a good performance on heterogenous parallel platforms.</description><identifier>ISSN: 1080-241X</identifier><identifier>ISBN: 0769525598</identifier><identifier>ISBN: 9780769525594</identifier><identifier>EISSN: 2331-107X</identifier><identifier>DOI: 10.1109/ANSS.2006.20</identifier><language>eng</language><publisher>IEEE</publisher><subject>Closed-form solution ; Computer networks ; Concurrent computing ; Distributed computing ; Monte Carlo methods ; Pricing ; Processor scheduling ; Resource management ; Security ; Workstations</subject><ispartof>39th Annual Simulation Symposium (ANSS'06), 2006, p.8 pp.-97</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1612848$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1612848$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gong Chen</creatorcontrib><creatorcontrib>Thulasiraman, P.</creatorcontrib><creatorcontrib>Thulasiram, R.K.</creatorcontrib><title>Distributed quasi-Monte Carlo algorithm for option pricing on HNOWs using mpC</title><title>39th Annual Simulation Symposium (ANSS'06)</title><addtitle>SIMSYM</addtitle><description>Monte Carlo (MC) simulation is one of the popular approaches for approximating the value of options and other derivative securities due to the absence of straightforward closed form solutions for many financial models. However, the slow convergence rate, O(N/sup - 1/2/) for N number of samples of the MC method has motivated research in quasi Monte-Carlo (QMC) techniques. QMC methods use low discrepancy (LD) sequences that provide faster, more accurate results than MC methods. In this paper, we focus on the parallelization of the QMC method on a heterogeneous network of workstations (HNOWs) for option pricing. HNOWs are machines with different processing capabilities and have distinct execution time for the same task. It is therefore important to allocate and schedule the tasks depending on the performance and resources of these machines. We present an adaptive, distributed QMC algorithm for option pricing, taking into account the performances of both processors and communications. The algorithm distributes data and computations based on the architectural features of the available processors at run time. We implement the algorithm using mpC, an extension of ANSI C language for parallel computation on heterogeneous networks. We compare and analyze the performance results with different parallel implementations. The results of our algorithm demonstrate a good performance on heterogenous parallel platforms.</description><subject>Closed-form solution</subject><subject>Computer networks</subject><subject>Concurrent computing</subject><subject>Distributed computing</subject><subject>Monte Carlo methods</subject><subject>Pricing</subject><subject>Processor scheduling</subject><subject>Resource management</subject><subject>Security</subject><subject>Workstations</subject><issn>1080-241X</issn><issn>2331-107X</issn><isbn>0769525598</isbn><isbn>9780769525594</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT7tOw0AQPPGQCCEdHc1VdA679_DZZRQeQcqjCIh01sVZh0O2z_jsgr_HKEyxO6sZjXYYu0WYIkL6MFtvt1MBEA_jjI2ElBghmN05uwYTp1ponSYXbISQQCQU7q7YJIQvGKA0mliP2OrRha51-76jA__ubXDRytcd8bltS89tefSt6z4rXviW-6ZzvuZN63JXH_lAF-vNR-B9-DurZn7DLgtbBpr87zF7f356my-i5ebldT5bRk5A3EUqV9qQykEYMtrkB5CWZCoLlUtJhU60RhoKphqkKQbdaiusQiSyBw17OWb3p9ym9d89hS6rXMipLG1Nvg-ZRNQGhBiMdyejI6JseLyy7U-GMYpEJfIXOFhcKA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Gong Chen</creator><creator>Thulasiraman, P.</creator><creator>Thulasiram, R.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2006</creationdate><title>Distributed quasi-Monte Carlo algorithm for option pricing on HNOWs using mpC</title><author>Gong Chen ; Thulasiraman, P. ; Thulasiram, R.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-4c457e4c027e757cd03ae393f4c33ef58551e10995037f7cda5a2a411eead50b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Closed-form solution</topic><topic>Computer networks</topic><topic>Concurrent computing</topic><topic>Distributed computing</topic><topic>Monte Carlo methods</topic><topic>Pricing</topic><topic>Processor scheduling</topic><topic>Resource management</topic><topic>Security</topic><topic>Workstations</topic><toplevel>online_resources</toplevel><creatorcontrib>Gong Chen</creatorcontrib><creatorcontrib>Thulasiraman, P.</creatorcontrib><creatorcontrib>Thulasiram, R.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong Chen</au><au>Thulasiraman, P.</au><au>Thulasiram, R.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Distributed quasi-Monte Carlo algorithm for option pricing on HNOWs using mpC</atitle><btitle>39th Annual Simulation Symposium (ANSS'06)</btitle><stitle>SIMSYM</stitle><date>2006</date><risdate>2006</risdate><spage>8 pp.</spage><epage>97</epage><pages>8 pp.-97</pages><issn>1080-241X</issn><eissn>2331-107X</eissn><isbn>0769525598</isbn><isbn>9780769525594</isbn><abstract>Monte Carlo (MC) simulation is one of the popular approaches for approximating the value of options and other derivative securities due to the absence of straightforward closed form solutions for many financial models. However, the slow convergence rate, O(N/sup - 1/2/) for N number of samples of the MC method has motivated research in quasi Monte-Carlo (QMC) techniques. QMC methods use low discrepancy (LD) sequences that provide faster, more accurate results than MC methods. In this paper, we focus on the parallelization of the QMC method on a heterogeneous network of workstations (HNOWs) for option pricing. HNOWs are machines with different processing capabilities and have distinct execution time for the same task. It is therefore important to allocate and schedule the tasks depending on the performance and resources of these machines. We present an adaptive, distributed QMC algorithm for option pricing, taking into account the performances of both processors and communications. The algorithm distributes data and computations based on the architectural features of the available processors at run time. We implement the algorithm using mpC, an extension of ANSI C language for parallel computation on heterogeneous networks. We compare and analyze the performance results with different parallel implementations. The results of our algorithm demonstrate a good performance on heterogenous parallel platforms.</abstract><pub>IEEE</pub><doi>10.1109/ANSS.2006.20</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1080-241X
ispartof 39th Annual Simulation Symposium (ANSS'06), 2006, p.8 pp.-97
issn 1080-241X
2331-107X
language eng
recordid cdi_ieee_primary_1612848
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Closed-form solution
Computer networks
Concurrent computing
Distributed computing
Monte Carlo methods
Pricing
Processor scheduling
Resource management
Security
Workstations
title Distributed quasi-Monte Carlo algorithm for option pricing on HNOWs using mpC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Distributed%20quasi-Monte%20Carlo%20algorithm%20for%20option%20pricing%20on%20HNOWs%20using%20mpC&rft.btitle=39th%20Annual%20Simulation%20Symposium%20(ANSS'06)&rft.au=Gong%20Chen&rft.date=2006&rft.spage=8%20pp.&rft.epage=97&rft.pages=8%20pp.-97&rft.issn=1080-241X&rft.eissn=2331-107X&rft.isbn=0769525598&rft.isbn_list=9780769525594&rft_id=info:doi/10.1109/ANSS.2006.20&rft_dat=%3Cproquest_6IE%3E31157022%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31157022&rft_id=info:pmid/&rft_ieee_id=1612848&rfr_iscdi=true