Neural network with variable excitability of input units (NN-VEIN)

NN-VEIN is a novel approach to the structure of neural networks. In this structure the input units are located in a network of connections. Traditional NN and NN-VEIN are compared. In this structure, input units are located in weighted connections of which the degree may be variable from 0 to N. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sayad, S., Sayad, J., Sayad, M.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602 vol.2
container_issue
container_start_page 601
container_title
container_volume
creator Sayad, S.
Sayad, J.
Sayad, M.H.
description NN-VEIN is a novel approach to the structure of neural networks. In this structure the input units are located in a network of connections. Traditional NN and NN-VEIN are compared. In this structure, input units are located in weighted connections of which the degree may be variable from 0 to N. This degree varies with respect to the quantity of input data. This network is being used to design intelligent systems in medical diagnosis. The input layer in NN-VEIN in comparison with NN is completely different and is a really intelligent process. Clinical diagnosis expert systems created by the use of this network do not need an input pattern to be entered at once, but like an expert physician, any question is based on previous questions.< >
doi_str_mv 10.1109/PACRIM.1991.160810
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_160810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>160810</ieee_id><sourcerecordid>160810</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-a68af09b885ebbd159bd16532318c005820df10c828b5773362dcbb0e0ba26dd3</originalsourceid><addsrcrecordid>eNotj0FLwzAYhgMiqHN_YKcc9dD6fUmTJsdZpha2TkS9jqRNMVq7kabO_XsH8z08z-2Bl5AZQooI-u55XryUqxS1xhQlKIQzcgUq1xmTXOEFmQ7DJxyXCcgzuCT3lRuD6Wjv4n4bvujexw_6Y4I3tnPU_dY-Gus7Hw9021Lf78ZIx97Hgd5UVfK-KKvba3Lemm5w039PyNvD4rV4Spbrx7KYLxOPOYuJkcq0oK1SwlnboNBHSMEZR1UDCMWgaRFqxZQVec65ZE1tLTiwhsmm4RMyO3W9c26zC_7bhMPm9JL_AT48R5g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network with variable excitability of input units (NN-VEIN)</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sayad, S. ; Sayad, J. ; Sayad, M.H.</creator><creatorcontrib>Sayad, S. ; Sayad, J. ; Sayad, M.H.</creatorcontrib><description>NN-VEIN is a novel approach to the structure of neural networks. In this structure the input units are located in a network of connections. Traditional NN and NN-VEIN are compared. In this structure, input units are located in weighted connections of which the degree may be variable from 0 to N. This degree varies with respect to the quantity of input data. This network is being used to design intelligent systems in medical diagnosis. The input layer in NN-VEIN in comparison with NN is completely different and is a really intelligent process. Clinical diagnosis expert systems created by the use of this network do not need an input pattern to be entered at once, but like an expert physician, any question is based on previous questions.&lt; &gt;</description><identifier>ISBN: 0879426381</identifier><identifier>ISBN: 9780879426385</identifier><identifier>DOI: 10.1109/PACRIM.1991.160810</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical engineering ; Clinical diagnosis ; Neural networks</subject><ispartof>[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings, 1991, p.601-602 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/160810$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/160810$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sayad, S.</creatorcontrib><creatorcontrib>Sayad, J.</creatorcontrib><creatorcontrib>Sayad, M.H.</creatorcontrib><title>Neural network with variable excitability of input units (NN-VEIN)</title><title>[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings</title><addtitle>PACRIM</addtitle><description>NN-VEIN is a novel approach to the structure of neural networks. In this structure the input units are located in a network of connections. Traditional NN and NN-VEIN are compared. In this structure, input units are located in weighted connections of which the degree may be variable from 0 to N. This degree varies with respect to the quantity of input data. This network is being used to design intelligent systems in medical diagnosis. The input layer in NN-VEIN in comparison with NN is completely different and is a really intelligent process. Clinical diagnosis expert systems created by the use of this network do not need an input pattern to be entered at once, but like an expert physician, any question is based on previous questions.&lt; &gt;</description><subject>Biomedical engineering</subject><subject>Clinical diagnosis</subject><subject>Neural networks</subject><isbn>0879426381</isbn><isbn>9780879426385</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1991</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLwzAYhgMiqHN_YKcc9dD6fUmTJsdZpha2TkS9jqRNMVq7kabO_XsH8z08z-2Bl5AZQooI-u55XryUqxS1xhQlKIQzcgUq1xmTXOEFmQ7DJxyXCcgzuCT3lRuD6Wjv4n4bvujexw_6Y4I3tnPU_dY-Gus7Hw9021Lf78ZIx97Hgd5UVfK-KKvba3Lemm5w039PyNvD4rV4Spbrx7KYLxOPOYuJkcq0oK1SwlnboNBHSMEZR1UDCMWgaRFqxZQVec65ZE1tLTiwhsmm4RMyO3W9c26zC_7bhMPm9JL_AT48R5g</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Sayad, S.</creator><creator>Sayad, J.</creator><creator>Sayad, M.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1991</creationdate><title>Neural network with variable excitability of input units (NN-VEIN)</title><author>Sayad, S. ; Sayad, J. ; Sayad, M.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-a68af09b885ebbd159bd16532318c005820df10c828b5773362dcbb0e0ba26dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Biomedical engineering</topic><topic>Clinical diagnosis</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Sayad, S.</creatorcontrib><creatorcontrib>Sayad, J.</creatorcontrib><creatorcontrib>Sayad, M.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sayad, S.</au><au>Sayad, J.</au><au>Sayad, M.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network with variable excitability of input units (NN-VEIN)</atitle><btitle>[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings</btitle><stitle>PACRIM</stitle><date>1991</date><risdate>1991</risdate><spage>601</spage><epage>602 vol.2</epage><pages>601-602 vol.2</pages><isbn>0879426381</isbn><isbn>9780879426385</isbn><abstract>NN-VEIN is a novel approach to the structure of neural networks. In this structure the input units are located in a network of connections. Traditional NN and NN-VEIN are compared. In this structure, input units are located in weighted connections of which the degree may be variable from 0 to N. This degree varies with respect to the quantity of input data. This network is being used to design intelligent systems in medical diagnosis. The input layer in NN-VEIN in comparison with NN is completely different and is a really intelligent process. Clinical diagnosis expert systems created by the use of this network do not need an input pattern to be entered at once, but like an expert physician, any question is based on previous questions.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/PACRIM.1991.160810</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0879426381
ispartof [1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings, 1991, p.601-602 vol.2
issn
language eng
recordid cdi_ieee_primary_160810
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical engineering
Clinical diagnosis
Neural networks
title Neural network with variable excitability of input units (NN-VEIN)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20with%20variable%20excitability%20of%20input%20units%20(NN-VEIN)&rft.btitle=%5B1991%5D%20IEEE%20Pacific%20Rim%20Conference%20on%20Communications,%20Computers%20and%20Signal%20Processing%20Conference%20Proceedings&rft.au=Sayad,%20S.&rft.date=1991&rft.spage=601&rft.epage=602%20vol.2&rft.pages=601-602%20vol.2&rft.isbn=0879426381&rft.isbn_list=9780879426385&rft_id=info:doi/10.1109/PACRIM.1991.160810&rft_dat=%3Cieee_6IE%3E160810%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=160810&rfr_iscdi=true