Solving scattering from 3D composite conducting and dielectric object by surface integral equation method

Recently, scattering from 3D composite conducting and dielectric object receives much attention. Traditionally, FEM-BI method is applied to solve the problem. But absorption boundary condition (ABC) is needed in FEM-BI method. In this paper, we use two combinations of surface integral equation to so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang, X.H., Hu, J., Yao, H.Y., Nie, Z.P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 4 pp.
container_title
container_volume 4
creator Yang, X.H.
Hu, J.
Yao, H.Y.
Nie, Z.P.
description Recently, scattering from 3D composite conducting and dielectric object receives much attention. Traditionally, FEM-BI method is applied to solve the problem. But absorption boundary condition (ABC) is needed in FEM-BI method. In this paper, we use two combinations of surface integral equation to solve the RCS of 3D composite conducting and dielectric object. Fast multipole method (FMM) is used. The problem is formulated in terms of a set of coupled integral equations involving equivalent electric and magnetic surface currents based on the equivalence theorem. The conducting structures and the dielectric materials are modeled by planar triangular patches, RWG basis and Galerkin method are used. The fast multipole method is applied to accelerate the computation of matrix-vector multiplication. The computational complexity and storage requirement is O(N/sup 1.5/), respectively. Numerical results are given for various structures and compared with other available data. The numerical results show that the present method has satisfying accuracy.
doi_str_mv 10.1109/APMC.2005.1606767
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1606767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1606767</ieee_id><sourcerecordid>1606767</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9085d68dbc7274f6084d67eedc24ab4d82b137d38405425aa05427bde66b8f0a3</originalsourceid><addsrcrecordid>eNo9kNtKAzEYhIMHsNY-gHiTF9j6Z5NNspelWhUqCvbCu5LDvzVlDzWbCn17t1i8mg-GGYYh5JbBlDEo72fvr_NpDlBMmQSppDojo5zJIhNK8HNyDUoDLwXnnxf_Rq6uyKTvtwAwJBkTfETCR1f_hHZDe2dSwnjEKnYN5Q_Udc2u60PCgVq_d-lomtZTH7BGl2JwtLPbgag90H4fK-OQhjbhJpqa4vfepNC1tMH01fkbclmZusfJScdktXhczZ-z5dvTy3y2zEIJKStBF15qb90wV1QStPBSIXqXC2OF17llXHmuBRQiL4w5irIepbS6AsPH5O6vNiDiehdDY-JhfTqJ_wJbD1q7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Solving scattering from 3D composite conducting and dielectric object by surface integral equation method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yang, X.H. ; Hu, J. ; Yao, H.Y. ; Nie, Z.P.</creator><creatorcontrib>Yang, X.H. ; Hu, J. ; Yao, H.Y. ; Nie, Z.P.</creatorcontrib><description>Recently, scattering from 3D composite conducting and dielectric object receives much attention. Traditionally, FEM-BI method is applied to solve the problem. But absorption boundary condition (ABC) is needed in FEM-BI method. In this paper, we use two combinations of surface integral equation to solve the RCS of 3D composite conducting and dielectric object. Fast multipole method (FMM) is used. The problem is formulated in terms of a set of coupled integral equations involving equivalent electric and magnetic surface currents based on the equivalence theorem. The conducting structures and the dielectric materials are modeled by planar triangular patches, RWG basis and Galerkin method are used. The fast multipole method is applied to accelerate the computation of matrix-vector multiplication. The computational complexity and storage requirement is O(N/sup 1.5/), respectively. Numerical results are given for various structures and compared with other available data. The numerical results show that the present method has satisfying accuracy.</description><identifier>ISSN: 2165-4727</identifier><identifier>ISBN: 078039433X</identifier><identifier>ISBN: 9780780394339</identifier><identifier>EISSN: 2165-4743</identifier><identifier>DOI: 10.1109/APMC.2005.1606767</identifier><language>eng</language><publisher>IEEE</publisher><subject>Absorption ; Acceleration ; Boundary conditions ; composite conducting and dielectric object ; Computational complexity ; Couplings ; Dielectric materials ; equivalence theorem ; FMM ; Galerkin method ; Integral equations ; Moment methods ; PMCHW ; RWG basis ; Scattering ; TENENH ; Transmission line matrix methods</subject><ispartof>2005 Asia-Pacific Microwave Conference Proceedings, 2005, Vol.4, p.4 pp.</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1606767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1606767$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, X.H.</creatorcontrib><creatorcontrib>Hu, J.</creatorcontrib><creatorcontrib>Yao, H.Y.</creatorcontrib><creatorcontrib>Nie, Z.P.</creatorcontrib><title>Solving scattering from 3D composite conducting and dielectric object by surface integral equation method</title><title>2005 Asia-Pacific Microwave Conference Proceedings</title><addtitle>APMC</addtitle><description>Recently, scattering from 3D composite conducting and dielectric object receives much attention. Traditionally, FEM-BI method is applied to solve the problem. But absorption boundary condition (ABC) is needed in FEM-BI method. In this paper, we use two combinations of surface integral equation to solve the RCS of 3D composite conducting and dielectric object. Fast multipole method (FMM) is used. The problem is formulated in terms of a set of coupled integral equations involving equivalent electric and magnetic surface currents based on the equivalence theorem. The conducting structures and the dielectric materials are modeled by planar triangular patches, RWG basis and Galerkin method are used. The fast multipole method is applied to accelerate the computation of matrix-vector multiplication. The computational complexity and storage requirement is O(N/sup 1.5/), respectively. Numerical results are given for various structures and compared with other available data. The numerical results show that the present method has satisfying accuracy.</description><subject>Absorption</subject><subject>Acceleration</subject><subject>Boundary conditions</subject><subject>composite conducting and dielectric object</subject><subject>Computational complexity</subject><subject>Couplings</subject><subject>Dielectric materials</subject><subject>equivalence theorem</subject><subject>FMM</subject><subject>Galerkin method</subject><subject>Integral equations</subject><subject>Moment methods</subject><subject>PMCHW</subject><subject>RWG basis</subject><subject>Scattering</subject><subject>TENENH</subject><subject>Transmission line matrix methods</subject><issn>2165-4727</issn><issn>2165-4743</issn><isbn>078039433X</isbn><isbn>9780780394339</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEYhIMHsNY-gHiTF9j6Z5NNspelWhUqCvbCu5LDvzVlDzWbCn17t1i8mg-GGYYh5JbBlDEo72fvr_NpDlBMmQSppDojo5zJIhNK8HNyDUoDLwXnnxf_Rq6uyKTvtwAwJBkTfETCR1f_hHZDe2dSwnjEKnYN5Q_Udc2u60PCgVq_d-lomtZTH7BGl2JwtLPbgag90H4fK-OQhjbhJpqa4vfepNC1tMH01fkbclmZusfJScdktXhczZ-z5dvTy3y2zEIJKStBF15qb90wV1QStPBSIXqXC2OF17llXHmuBRQiL4w5irIepbS6AsPH5O6vNiDiehdDY-JhfTqJ_wJbD1q7</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Yang, X.H.</creator><creator>Hu, J.</creator><creator>Yao, H.Y.</creator><creator>Nie, Z.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Solving scattering from 3D composite conducting and dielectric object by surface integral equation method</title><author>Yang, X.H. ; Hu, J. ; Yao, H.Y. ; Nie, Z.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9085d68dbc7274f6084d67eedc24ab4d82b137d38405425aa05427bde66b8f0a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Absorption</topic><topic>Acceleration</topic><topic>Boundary conditions</topic><topic>composite conducting and dielectric object</topic><topic>Computational complexity</topic><topic>Couplings</topic><topic>Dielectric materials</topic><topic>equivalence theorem</topic><topic>FMM</topic><topic>Galerkin method</topic><topic>Integral equations</topic><topic>Moment methods</topic><topic>PMCHW</topic><topic>RWG basis</topic><topic>Scattering</topic><topic>TENENH</topic><topic>Transmission line matrix methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, X.H.</creatorcontrib><creatorcontrib>Hu, J.</creatorcontrib><creatorcontrib>Yao, H.Y.</creatorcontrib><creatorcontrib>Nie, Z.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, X.H.</au><au>Hu, J.</au><au>Yao, H.Y.</au><au>Nie, Z.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving scattering from 3D composite conducting and dielectric object by surface integral equation method</atitle><btitle>2005 Asia-Pacific Microwave Conference Proceedings</btitle><stitle>APMC</stitle><date>2005</date><risdate>2005</risdate><volume>4</volume><spage>4 pp.</spage><pages>4 pp.-</pages><issn>2165-4727</issn><eissn>2165-4743</eissn><isbn>078039433X</isbn><isbn>9780780394339</isbn><abstract>Recently, scattering from 3D composite conducting and dielectric object receives much attention. Traditionally, FEM-BI method is applied to solve the problem. But absorption boundary condition (ABC) is needed in FEM-BI method. In this paper, we use two combinations of surface integral equation to solve the RCS of 3D composite conducting and dielectric object. Fast multipole method (FMM) is used. The problem is formulated in terms of a set of coupled integral equations involving equivalent electric and magnetic surface currents based on the equivalence theorem. The conducting structures and the dielectric materials are modeled by planar triangular patches, RWG basis and Galerkin method are used. The fast multipole method is applied to accelerate the computation of matrix-vector multiplication. The computational complexity and storage requirement is O(N/sup 1.5/), respectively. Numerical results are given for various structures and compared with other available data. The numerical results show that the present method has satisfying accuracy.</abstract><pub>IEEE</pub><doi>10.1109/APMC.2005.1606767</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2165-4727
ispartof 2005 Asia-Pacific Microwave Conference Proceedings, 2005, Vol.4, p.4 pp.
issn 2165-4727
2165-4743
language eng
recordid cdi_ieee_primary_1606767
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Absorption
Acceleration
Boundary conditions
composite conducting and dielectric object
Computational complexity
Couplings
Dielectric materials
equivalence theorem
FMM
Galerkin method
Integral equations
Moment methods
PMCHW
RWG basis
Scattering
TENENH
Transmission line matrix methods
title Solving scattering from 3D composite conducting and dielectric object by surface integral equation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20scattering%20from%203D%20composite%20conducting%20and%20dielectric%20object%20by%20surface%20integral%20equation%20method&rft.btitle=2005%20Asia-Pacific%20Microwave%20Conference%20Proceedings&rft.au=Yang,%20X.H.&rft.date=2005&rft.volume=4&rft.spage=4%20pp.&rft.pages=4%20pp.-&rft.issn=2165-4727&rft.eissn=2165-4743&rft.isbn=078039433X&rft.isbn_list=9780780394339&rft_id=info:doi/10.1109/APMC.2005.1606767&rft_dat=%3Cieee_6IE%3E1606767%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1606767&rfr_iscdi=true