Multiple sets of solutions for harmonic elimination PWM bipolar waveforms: analysis and experimental verification

Multiple sets of solutions for the selective harmonic elimination pulse-width modulation method for inverter control exist. These sets present an independent solution to the same problem but further investigation reveals that certain sets may offer an improved overall harmonic performance. In this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2006-03, Vol.21 (2), p.415-421
Hauptverfasser: Agelidis, V.G., Balouktsis, A., Balouktsis, I., Cossar, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue 2
container_start_page 415
container_title IEEE transactions on power electronics
container_volume 21
creator Agelidis, V.G.
Balouktsis, A.
Balouktsis, I.
Cossar, C.
description Multiple sets of solutions for the selective harmonic elimination pulse-width modulation method for inverter control exist. These sets present an independent solution to the same problem but further investigation reveals that certain sets may offer an improved overall harmonic performance. In this paper, a minimization method is discussed as a way to obtain these multiple sets of switching angles. A simple distortion harmonic factor that takes into account the first two most significant harmonics present in the generated waveform is considered in order to evaluate the performance of each set. The bipolar waveform is thoroughly analyzed and two cases are considered; single-phase patterns which eliminate all odd harmonics and three-phase counterparts which eliminate only the nontriplen odd harmonics from the line-to-neutral pattern but such harmonics are naturally eliminated from the line-to-line waveform. Experimental results support the theoretical considerations reported in the paper.
doi_str_mv 10.1109/TPEL.2005.869752
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1603673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1603673</ieee_id><sourcerecordid>896222600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-578feb6cfda001d1e414ccf5b48243c5bdd9eca80acc2337a941393d7c46e7713</originalsourceid><addsrcrecordid>eNp9kc9rFTEQxxdR8Nn2LngJgva0r5NkNz-8SalVeMUeKh6XvOwEU7KbbbJb7X9v1lcoeOhpBubzHeY736p6S2FLKeizm-uL3ZYBtFsltGzZi2pDdUNroCBfVhtQqq2V1vx19SbnWwDatEA31d3VEmY_BSQZ50yiIzmGZfZxzMTFRH6ZNMTRW4LBD34064Rc_7wiez_FYBL5be6xgEP-RMxowkP2uTQ9wT8TJj_gOJtA7kvrvP2nPq5eORMynjzWo-rHl4ub86_17vvlt_PPu9pyxee6lcrhXljXm3JsT7GhjbWu3TeKNdy2-77XaI0CYy3jXJpilmveS9sIlJLyo-r0sHdK8W7BPHeDzxZDMCPGJXdKC8aYACjkx2dJpqCRguoCvv8PvI1LKq4LA0IoobgoEBwgm2LOCV03lT-Y9NBR6NaoujWqbo2qO0RVJB8e95psTXDJjNbnJ50UQJlaLb07cB4Rn8YCuJCc_wWDO558</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206686836</pqid></control><display><type>article</type><title>Multiple sets of solutions for harmonic elimination PWM bipolar waveforms: analysis and experimental verification</title><source>IEEE Electronic Library (IEL)</source><creator>Agelidis, V.G. ; Balouktsis, A. ; Balouktsis, I. ; Cossar, C.</creator><creatorcontrib>Agelidis, V.G. ; Balouktsis, A. ; Balouktsis, I. ; Cossar, C.</creatorcontrib><description>Multiple sets of solutions for the selective harmonic elimination pulse-width modulation method for inverter control exist. These sets present an independent solution to the same problem but further investigation reveals that certain sets may offer an improved overall harmonic performance. In this paper, a minimization method is discussed as a way to obtain these multiple sets of switching angles. A simple distortion harmonic factor that takes into account the first two most significant harmonics present in the generated waveform is considered in order to evaluate the performance of each set. The bipolar waveform is thoroughly analyzed and two cases are considered; single-phase patterns which eliminate all odd harmonics and three-phase counterparts which eliminate only the nontriplen odd harmonics from the line-to-neutral pattern but such harmonics are naturally eliminated from the line-to-line waveform. Experimental results support the theoretical considerations reported in the paper.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2005.869752</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Distortion ; Electrical engineering. Electrical power engineering ; Electronics ; Exact sciences and technology ; Harmonic analysis ; Harmonics ; Minimization methods ; Modulation ; Nonlinear equations ; Optimization ; Pattern analysis ; Performance analysis ; Power electronics, power supplies ; Pulse duration modulation ; Pulse inverters ; Pulse width modulation ; Pulse width modulation inverters ; Selective harmonic elimination pulse-width modulation (SHEPWM) ; Switching ; Voltage ; Waveform analysis ; Waveforms</subject><ispartof>IEEE transactions on power electronics, 2006-03, Vol.21 (2), p.415-421</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-578feb6cfda001d1e414ccf5b48243c5bdd9eca80acc2337a941393d7c46e7713</citedby><cites>FETCH-LOGICAL-c383t-578feb6cfda001d1e414ccf5b48243c5bdd9eca80acc2337a941393d7c46e7713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1603673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1603673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17601281$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Agelidis, V.G.</creatorcontrib><creatorcontrib>Balouktsis, A.</creatorcontrib><creatorcontrib>Balouktsis, I.</creatorcontrib><creatorcontrib>Cossar, C.</creatorcontrib><title>Multiple sets of solutions for harmonic elimination PWM bipolar waveforms: analysis and experimental verification</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Multiple sets of solutions for the selective harmonic elimination pulse-width modulation method for inverter control exist. These sets present an independent solution to the same problem but further investigation reveals that certain sets may offer an improved overall harmonic performance. In this paper, a minimization method is discussed as a way to obtain these multiple sets of switching angles. A simple distortion harmonic factor that takes into account the first two most significant harmonics present in the generated waveform is considered in order to evaluate the performance of each set. The bipolar waveform is thoroughly analyzed and two cases are considered; single-phase patterns which eliminate all odd harmonics and three-phase counterparts which eliminate only the nontriplen odd harmonics from the line-to-neutral pattern but such harmonics are naturally eliminated from the line-to-line waveform. Experimental results support the theoretical considerations reported in the paper.</description><subject>Applied sciences</subject><subject>Distortion</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Minimization methods</subject><subject>Modulation</subject><subject>Nonlinear equations</subject><subject>Optimization</subject><subject>Pattern analysis</subject><subject>Performance analysis</subject><subject>Power electronics, power supplies</subject><subject>Pulse duration modulation</subject><subject>Pulse inverters</subject><subject>Pulse width modulation</subject><subject>Pulse width modulation inverters</subject><subject>Selective harmonic elimination pulse-width modulation (SHEPWM)</subject><subject>Switching</subject><subject>Voltage</subject><subject>Waveform analysis</subject><subject>Waveforms</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc9rFTEQxxdR8Nn2LngJgva0r5NkNz-8SalVeMUeKh6XvOwEU7KbbbJb7X9v1lcoeOhpBubzHeY736p6S2FLKeizm-uL3ZYBtFsltGzZi2pDdUNroCBfVhtQqq2V1vx19SbnWwDatEA31d3VEmY_BSQZ50yiIzmGZfZxzMTFRH6ZNMTRW4LBD34064Rc_7wiez_FYBL5be6xgEP-RMxowkP2uTQ9wT8TJj_gOJtA7kvrvP2nPq5eORMynjzWo-rHl4ub86_17vvlt_PPu9pyxee6lcrhXljXm3JsT7GhjbWu3TeKNdy2-77XaI0CYy3jXJpilmveS9sIlJLyo-r0sHdK8W7BPHeDzxZDMCPGJXdKC8aYACjkx2dJpqCRguoCvv8PvI1LKq4LA0IoobgoEBwgm2LOCV03lT-Y9NBR6NaoujWqbo2qO0RVJB8e95psTXDJjNbnJ50UQJlaLb07cB4Rn8YCuJCc_wWDO558</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Agelidis, V.G.</creator><creator>Balouktsis, A.</creator><creator>Balouktsis, I.</creator><creator>Cossar, C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20060301</creationdate><title>Multiple sets of solutions for harmonic elimination PWM bipolar waveforms: analysis and experimental verification</title><author>Agelidis, V.G. ; Balouktsis, A. ; Balouktsis, I. ; Cossar, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-578feb6cfda001d1e414ccf5b48243c5bdd9eca80acc2337a941393d7c46e7713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Distortion</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Minimization methods</topic><topic>Modulation</topic><topic>Nonlinear equations</topic><topic>Optimization</topic><topic>Pattern analysis</topic><topic>Performance analysis</topic><topic>Power electronics, power supplies</topic><topic>Pulse duration modulation</topic><topic>Pulse inverters</topic><topic>Pulse width modulation</topic><topic>Pulse width modulation inverters</topic><topic>Selective harmonic elimination pulse-width modulation (SHEPWM)</topic><topic>Switching</topic><topic>Voltage</topic><topic>Waveform analysis</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agelidis, V.G.</creatorcontrib><creatorcontrib>Balouktsis, A.</creatorcontrib><creatorcontrib>Balouktsis, I.</creatorcontrib><creatorcontrib>Cossar, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agelidis, V.G.</au><au>Balouktsis, A.</au><au>Balouktsis, I.</au><au>Cossar, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple sets of solutions for harmonic elimination PWM bipolar waveforms: analysis and experimental verification</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2006-03-01</date><risdate>2006</risdate><volume>21</volume><issue>2</issue><spage>415</spage><epage>421</epage><pages>415-421</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Multiple sets of solutions for the selective harmonic elimination pulse-width modulation method for inverter control exist. These sets present an independent solution to the same problem but further investigation reveals that certain sets may offer an improved overall harmonic performance. In this paper, a minimization method is discussed as a way to obtain these multiple sets of switching angles. A simple distortion harmonic factor that takes into account the first two most significant harmonics present in the generated waveform is considered in order to evaluate the performance of each set. The bipolar waveform is thoroughly analyzed and two cases are considered; single-phase patterns which eliminate all odd harmonics and three-phase counterparts which eliminate only the nontriplen odd harmonics from the line-to-neutral pattern but such harmonics are naturally eliminated from the line-to-line waveform. Experimental results support the theoretical considerations reported in the paper.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2005.869752</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2006-03, Vol.21 (2), p.415-421
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_1603673
source IEEE Electronic Library (IEL)
subjects Applied sciences
Distortion
Electrical engineering. Electrical power engineering
Electronics
Exact sciences and technology
Harmonic analysis
Harmonics
Minimization methods
Modulation
Nonlinear equations
Optimization
Pattern analysis
Performance analysis
Power electronics, power supplies
Pulse duration modulation
Pulse inverters
Pulse width modulation
Pulse width modulation inverters
Selective harmonic elimination pulse-width modulation (SHEPWM)
Switching
Voltage
Waveform analysis
Waveforms
title Multiple sets of solutions for harmonic elimination PWM bipolar waveforms: analysis and experimental verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20sets%20of%20solutions%20for%20harmonic%20elimination%20PWM%20bipolar%20waveforms:%20analysis%20and%20experimental%20verification&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Agelidis,%20V.G.&rft.date=2006-03-01&rft.volume=21&rft.issue=2&rft.spage=415&rft.epage=421&rft.pages=415-421&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2005.869752&rft_dat=%3Cproquest_RIE%3E896222600%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206686836&rft_id=info:pmid/&rft_ieee_id=1603673&rfr_iscdi=true