Modified simultaneous iterative reconstruction technique for faster parallel computation
Three-dimensional iterative reconstruction of high-resolution computed tomography data poses significant difficulties due to the associated computational burden. In previous work, we have shown that implementing distributed computing techniques in addition to ordered subsets is an effective approach...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2718 |
---|---|
container_issue | |
container_start_page | 2715 |
container_title | |
container_volume | 5 |
creator | Benson, T.M. Gregor, J. |
description | Three-dimensional iterative reconstruction of high-resolution computed tomography data poses significant difficulties due to the associated computational burden. In previous work, we have shown that implementing distributed computing techniques in addition to ordered subsets is an effective approach to decreasing the total reconstruction run-time. However, we also established that interprocessor communication accounts for a considerable portion of the total run-time. In this work, we first analyze the simultaneous iterative reconstruction technique (SIRT) to establish its convergence. We then modify the SIRT algorithm in order to substantially decrease the interprocessor communication requirements, and thus the final run-time, while maintaining convergence. We include error reduction statistics and timing results gathered from a reconstruction of a mouse data set to demonstrate the advantages of the modified SIRT algorithm |
doi_str_mv | 10.1109/NSSMIC.2005.1596897 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1596897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1596897</ieee_id><sourcerecordid>1596897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-38fa95f9e627195aa552e029353716f2240d8c38776574449860b2de10a1c0a63</originalsourceid><addsrcrecordid>eNotkMtKAzEYRoMXsFafoJu8wNQ_92QpxUuh1UUV3JWY-YOR6UxNMoJvb8WuDnwcvsUhZMZgzhi4m6fNZr1czDmAmjPltHXmhEy4MqYBy90puQRjQTjOmTgjE3YYG6GVvCCXpXwCcBBSTsjbemhTTNjSknZjV32Pw1hoqph9Td9IM4ahLzWPoaahpxXDR5--RqRxyDT6chDp3mffddjRMOz2Y_V_5hU5j74reH3klLze370sHpvV88NycbtqAueqNsJG71R0qLlhTnmvFEfgTihhmI6cS2htENYYrYyU0lkN77xFBp4F8FpMyez_NyHidp_Tzuef7bGI-AWWjlSh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modified simultaneous iterative reconstruction technique for faster parallel computation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Benson, T.M. ; Gregor, J.</creator><creatorcontrib>Benson, T.M. ; Gregor, J.</creatorcontrib><description>Three-dimensional iterative reconstruction of high-resolution computed tomography data poses significant difficulties due to the associated computational burden. In previous work, we have shown that implementing distributed computing techniques in addition to ordered subsets is an effective approach to decreasing the total reconstruction run-time. However, we also established that interprocessor communication accounts for a considerable portion of the total run-time. In this work, we first analyze the simultaneous iterative reconstruction technique (SIRT) to establish its convergence. We then modify the SIRT algorithm in order to substantially decrease the interprocessor communication requirements, and thus the final run-time, while maintaining convergence. We include error reduction statistics and timing results gathered from a reconstruction of a mouse data set to demonstrate the advantages of the modified SIRT algorithm</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 0780392213</identifier><identifier>ISBN: 9780780392212</identifier><identifier>EISSN: 2577-0829</identifier><identifier>DOI: 10.1109/NSSMIC.2005.1596897</identifier><language>eng</language><publisher>IEEE</publisher><subject>Attenuation ; Computed tomography ; Computer science ; Concurrent computing ; Convergence ; Distributed computing ; Eigenvalues and eigenfunctions ; Iterative algorithms ; Linear systems ; Runtime</subject><ispartof>IEEE Nuclear Science Symposium Conference Record, 2005, 2005, Vol.5, p.2715-2718</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-38fa95f9e627195aa552e029353716f2240d8c38776574449860b2de10a1c0a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1596897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1596897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Benson, T.M.</creatorcontrib><creatorcontrib>Gregor, J.</creatorcontrib><title>Modified simultaneous iterative reconstruction technique for faster parallel computation</title><title>IEEE Nuclear Science Symposium Conference Record, 2005</title><addtitle>NSSMIC</addtitle><description>Three-dimensional iterative reconstruction of high-resolution computed tomography data poses significant difficulties due to the associated computational burden. In previous work, we have shown that implementing distributed computing techniques in addition to ordered subsets is an effective approach to decreasing the total reconstruction run-time. However, we also established that interprocessor communication accounts for a considerable portion of the total run-time. In this work, we first analyze the simultaneous iterative reconstruction technique (SIRT) to establish its convergence. We then modify the SIRT algorithm in order to substantially decrease the interprocessor communication requirements, and thus the final run-time, while maintaining convergence. We include error reduction statistics and timing results gathered from a reconstruction of a mouse data set to demonstrate the advantages of the modified SIRT algorithm</description><subject>Attenuation</subject><subject>Computed tomography</subject><subject>Computer science</subject><subject>Concurrent computing</subject><subject>Convergence</subject><subject>Distributed computing</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Iterative algorithms</subject><subject>Linear systems</subject><subject>Runtime</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>0780392213</isbn><isbn>9780780392212</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtKAzEYRoMXsFafoJu8wNQ_92QpxUuh1UUV3JWY-YOR6UxNMoJvb8WuDnwcvsUhZMZgzhi4m6fNZr1czDmAmjPltHXmhEy4MqYBy90puQRjQTjOmTgjE3YYG6GVvCCXpXwCcBBSTsjbemhTTNjSknZjV32Pw1hoqph9Td9IM4ahLzWPoaahpxXDR5--RqRxyDT6chDp3mffddjRMOz2Y_V_5hU5j74reH3klLze370sHpvV88NycbtqAueqNsJG71R0qLlhTnmvFEfgTihhmI6cS2htENYYrYyU0lkN77xFBp4F8FpMyez_NyHidp_Tzuef7bGI-AWWjlSh</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Benson, T.M.</creator><creator>Gregor, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Modified simultaneous iterative reconstruction technique for faster parallel computation</title><author>Benson, T.M. ; Gregor, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-38fa95f9e627195aa552e029353716f2240d8c38776574449860b2de10a1c0a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Attenuation</topic><topic>Computed tomography</topic><topic>Computer science</topic><topic>Concurrent computing</topic><topic>Convergence</topic><topic>Distributed computing</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Iterative algorithms</topic><topic>Linear systems</topic><topic>Runtime</topic><toplevel>online_resources</toplevel><creatorcontrib>Benson, T.M.</creatorcontrib><creatorcontrib>Gregor, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benson, T.M.</au><au>Gregor, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modified simultaneous iterative reconstruction technique for faster parallel computation</atitle><btitle>IEEE Nuclear Science Symposium Conference Record, 2005</btitle><stitle>NSSMIC</stitle><date>2005</date><risdate>2005</risdate><volume>5</volume><spage>2715</spage><epage>2718</epage><pages>2715-2718</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>0780392213</isbn><isbn>9780780392212</isbn><abstract>Three-dimensional iterative reconstruction of high-resolution computed tomography data poses significant difficulties due to the associated computational burden. In previous work, we have shown that implementing distributed computing techniques in addition to ordered subsets is an effective approach to decreasing the total reconstruction run-time. However, we also established that interprocessor communication accounts for a considerable portion of the total run-time. In this work, we first analyze the simultaneous iterative reconstruction technique (SIRT) to establish its convergence. We then modify the SIRT algorithm in order to substantially decrease the interprocessor communication requirements, and thus the final run-time, while maintaining convergence. We include error reduction statistics and timing results gathered from a reconstruction of a mouse data set to demonstrate the advantages of the modified SIRT algorithm</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2005.1596897</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1082-3654 |
ispartof | IEEE Nuclear Science Symposium Conference Record, 2005, 2005, Vol.5, p.2715-2718 |
issn | 1082-3654 2577-0829 |
language | eng |
recordid | cdi_ieee_primary_1596897 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Attenuation Computed tomography Computer science Concurrent computing Convergence Distributed computing Eigenvalues and eigenfunctions Iterative algorithms Linear systems Runtime |
title | Modified simultaneous iterative reconstruction technique for faster parallel computation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modified%20simultaneous%20iterative%20reconstruction%20technique%20for%20faster%20parallel%20computation&rft.btitle=IEEE%20Nuclear%20Science%20Symposium%20Conference%20Record,%202005&rft.au=Benson,%20T.M.&rft.date=2005&rft.volume=5&rft.spage=2715&rft.epage=2718&rft.pages=2715-2718&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=0780392213&rft.isbn_list=9780780392212&rft_id=info:doi/10.1109/NSSMIC.2005.1596897&rft_dat=%3Cieee_6IE%3E1596897%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1596897&rfr_iscdi=true |