Modified simultaneous iterative reconstruction technique for faster parallel computation

Three-dimensional iterative reconstruction of high-resolution computed tomography data poses significant difficulties due to the associated computational burden. In previous work, we have shown that implementing distributed computing techniques in addition to ordered subsets is an effective approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Benson, T.M., Gregor, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2718
container_issue
container_start_page 2715
container_title
container_volume 5
creator Benson, T.M.
Gregor, J.
description Three-dimensional iterative reconstruction of high-resolution computed tomography data poses significant difficulties due to the associated computational burden. In previous work, we have shown that implementing distributed computing techniques in addition to ordered subsets is an effective approach to decreasing the total reconstruction run-time. However, we also established that interprocessor communication accounts for a considerable portion of the total run-time. In this work, we first analyze the simultaneous iterative reconstruction technique (SIRT) to establish its convergence. We then modify the SIRT algorithm in order to substantially decrease the interprocessor communication requirements, and thus the final run-time, while maintaining convergence. We include error reduction statistics and timing results gathered from a reconstruction of a mouse data set to demonstrate the advantages of the modified SIRT algorithm
doi_str_mv 10.1109/NSSMIC.2005.1596897
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1596897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1596897</ieee_id><sourcerecordid>1596897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-38fa95f9e627195aa552e029353716f2240d8c38776574449860b2de10a1c0a63</originalsourceid><addsrcrecordid>eNotkMtKAzEYRoMXsFafoJu8wNQ_92QpxUuh1UUV3JWY-YOR6UxNMoJvb8WuDnwcvsUhZMZgzhi4m6fNZr1czDmAmjPltHXmhEy4MqYBy90puQRjQTjOmTgjE3YYG6GVvCCXpXwCcBBSTsjbemhTTNjSknZjV32Pw1hoqph9Td9IM4ahLzWPoaahpxXDR5--RqRxyDT6chDp3mffddjRMOz2Y_V_5hU5j74reH3klLze370sHpvV88NycbtqAueqNsJG71R0qLlhTnmvFEfgTihhmI6cS2htENYYrYyU0lkN77xFBp4F8FpMyez_NyHidp_Tzuef7bGI-AWWjlSh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modified simultaneous iterative reconstruction technique for faster parallel computation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Benson, T.M. ; Gregor, J.</creator><creatorcontrib>Benson, T.M. ; Gregor, J.</creatorcontrib><description>Three-dimensional iterative reconstruction of high-resolution computed tomography data poses significant difficulties due to the associated computational burden. In previous work, we have shown that implementing distributed computing techniques in addition to ordered subsets is an effective approach to decreasing the total reconstruction run-time. However, we also established that interprocessor communication accounts for a considerable portion of the total run-time. In this work, we first analyze the simultaneous iterative reconstruction technique (SIRT) to establish its convergence. We then modify the SIRT algorithm in order to substantially decrease the interprocessor communication requirements, and thus the final run-time, while maintaining convergence. We include error reduction statistics and timing results gathered from a reconstruction of a mouse data set to demonstrate the advantages of the modified SIRT algorithm</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 0780392213</identifier><identifier>ISBN: 9780780392212</identifier><identifier>EISSN: 2577-0829</identifier><identifier>DOI: 10.1109/NSSMIC.2005.1596897</identifier><language>eng</language><publisher>IEEE</publisher><subject>Attenuation ; Computed tomography ; Computer science ; Concurrent computing ; Convergence ; Distributed computing ; Eigenvalues and eigenfunctions ; Iterative algorithms ; Linear systems ; Runtime</subject><ispartof>IEEE Nuclear Science Symposium Conference Record, 2005, 2005, Vol.5, p.2715-2718</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-38fa95f9e627195aa552e029353716f2240d8c38776574449860b2de10a1c0a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1596897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1596897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Benson, T.M.</creatorcontrib><creatorcontrib>Gregor, J.</creatorcontrib><title>Modified simultaneous iterative reconstruction technique for faster parallel computation</title><title>IEEE Nuclear Science Symposium Conference Record, 2005</title><addtitle>NSSMIC</addtitle><description>Three-dimensional iterative reconstruction of high-resolution computed tomography data poses significant difficulties due to the associated computational burden. In previous work, we have shown that implementing distributed computing techniques in addition to ordered subsets is an effective approach to decreasing the total reconstruction run-time. However, we also established that interprocessor communication accounts for a considerable portion of the total run-time. In this work, we first analyze the simultaneous iterative reconstruction technique (SIRT) to establish its convergence. We then modify the SIRT algorithm in order to substantially decrease the interprocessor communication requirements, and thus the final run-time, while maintaining convergence. We include error reduction statistics and timing results gathered from a reconstruction of a mouse data set to demonstrate the advantages of the modified SIRT algorithm</description><subject>Attenuation</subject><subject>Computed tomography</subject><subject>Computer science</subject><subject>Concurrent computing</subject><subject>Convergence</subject><subject>Distributed computing</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Iterative algorithms</subject><subject>Linear systems</subject><subject>Runtime</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>0780392213</isbn><isbn>9780780392212</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtKAzEYRoMXsFafoJu8wNQ_92QpxUuh1UUV3JWY-YOR6UxNMoJvb8WuDnwcvsUhZMZgzhi4m6fNZr1czDmAmjPltHXmhEy4MqYBy90puQRjQTjOmTgjE3YYG6GVvCCXpXwCcBBSTsjbemhTTNjSknZjV32Pw1hoqph9Td9IM4ahLzWPoaahpxXDR5--RqRxyDT6chDp3mffddjRMOz2Y_V_5hU5j74reH3klLze370sHpvV88NycbtqAueqNsJG71R0qLlhTnmvFEfgTihhmI6cS2htENYYrYyU0lkN77xFBp4F8FpMyez_NyHidp_Tzuef7bGI-AWWjlSh</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Benson, T.M.</creator><creator>Gregor, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Modified simultaneous iterative reconstruction technique for faster parallel computation</title><author>Benson, T.M. ; Gregor, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-38fa95f9e627195aa552e029353716f2240d8c38776574449860b2de10a1c0a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Attenuation</topic><topic>Computed tomography</topic><topic>Computer science</topic><topic>Concurrent computing</topic><topic>Convergence</topic><topic>Distributed computing</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Iterative algorithms</topic><topic>Linear systems</topic><topic>Runtime</topic><toplevel>online_resources</toplevel><creatorcontrib>Benson, T.M.</creatorcontrib><creatorcontrib>Gregor, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benson, T.M.</au><au>Gregor, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modified simultaneous iterative reconstruction technique for faster parallel computation</atitle><btitle>IEEE Nuclear Science Symposium Conference Record, 2005</btitle><stitle>NSSMIC</stitle><date>2005</date><risdate>2005</risdate><volume>5</volume><spage>2715</spage><epage>2718</epage><pages>2715-2718</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>0780392213</isbn><isbn>9780780392212</isbn><abstract>Three-dimensional iterative reconstruction of high-resolution computed tomography data poses significant difficulties due to the associated computational burden. In previous work, we have shown that implementing distributed computing techniques in addition to ordered subsets is an effective approach to decreasing the total reconstruction run-time. However, we also established that interprocessor communication accounts for a considerable portion of the total run-time. In this work, we first analyze the simultaneous iterative reconstruction technique (SIRT) to establish its convergence. We then modify the SIRT algorithm in order to substantially decrease the interprocessor communication requirements, and thus the final run-time, while maintaining convergence. We include error reduction statistics and timing results gathered from a reconstruction of a mouse data set to demonstrate the advantages of the modified SIRT algorithm</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2005.1596897</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3654
ispartof IEEE Nuclear Science Symposium Conference Record, 2005, 2005, Vol.5, p.2715-2718
issn 1082-3654
2577-0829
language eng
recordid cdi_ieee_primary_1596897
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Attenuation
Computed tomography
Computer science
Concurrent computing
Convergence
Distributed computing
Eigenvalues and eigenfunctions
Iterative algorithms
Linear systems
Runtime
title Modified simultaneous iterative reconstruction technique for faster parallel computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modified%20simultaneous%20iterative%20reconstruction%20technique%20for%20faster%20parallel%20computation&rft.btitle=IEEE%20Nuclear%20Science%20Symposium%20Conference%20Record,%202005&rft.au=Benson,%20T.M.&rft.date=2005&rft.volume=5&rft.spage=2715&rft.epage=2718&rft.pages=2715-2718&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=0780392213&rft.isbn_list=9780780392212&rft_id=info:doi/10.1109/NSSMIC.2005.1596897&rft_dat=%3Cieee_6IE%3E1596897%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1596897&rfr_iscdi=true