Characterization of a time-of-flight PET scanner based on lanthanum bromide

A proto-type time-of-flight (TOF) 3D PET scanner based on lanthanum bromide detectors has been developed. The LaBr/sub 3/(5%Ce) Anger-logic detectors in this new scanner use 4/spl times/4/spl times/30 mm pixels and continuous light-guide coupled to a hexagonal array of 50-mm PMTs. The scanner consis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karp, J.S., Kuhn, A., Perkins, A.E., Surti, S., Werner, M.E., Daube-Witherspoon, M.E., Popescu, L., Vandenberghe, S., Muehllehner, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1923
container_issue
container_start_page 5 pp.
container_title
container_volume 4
creator Karp, J.S.
Kuhn, A.
Perkins, A.E.
Surti, S.
Werner, M.E.
Daube-Witherspoon, M.E.
Popescu, L.
Vandenberghe, S.
Muehllehner, G.
description A proto-type time-of-flight (TOF) 3D PET scanner based on lanthanum bromide detectors has been developed. The LaBr/sub 3/(5%Ce) Anger-logic detectors in this new scanner use 4/spl times/4/spl times/30 mm pixels and continuous light-guide coupled to a hexagonal array of 50-mm PMTs. The scanner consists of 24 modules with a 93-cm detector diameter and 25-cm axial field-of-view. Initial characterization of scanner performance has been performed, including energy and timing performance. We currently measure an overall system energy resolution of 7.5% and a system timing resolution is 460 ps, although we expect these results to improve eventually when the electronics are fully optimized. Since there are not yet standard tests to quantify the benefit of TOF, we designed two phantoms with hot and cold spheres in 27-cm and 35-cm diameter vessels to evaluate the TOF performance as a function of body size. The data from this scanner are reconstructed with a fully 3D list-mode iterative TOF algorithm with all data corrections incorporated into the system model. We find that TOF reconstruction reduces the noise and background variability, especially for the larger phantom representing a large patient. In addition, TOF improves detail and contrast of the spheres (lesions), especially the smallest 10-mm sphere. The TOF reconstruction reaches convergence faster than the non-TOF reconstruction, and the rate of convergence is seen to be more insensitive to object size. These results indicate that TOF will help improve image quality and potentially reduce scan time with clinical patients.
doi_str_mv 10.1109/NSSMIC.2005.1596707
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1596707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1596707</ieee_id><sourcerecordid>1596707</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d52a12a83fffcb60dced4cc4be3f33cf9df666d6d30f48cf501341bc9872e6143</originalsourceid><addsrcrecordid>eNotkMlOwzAURS0GibTwBd34Bxye53iJogIVZZBa1pXjgRhlQIlZwNdTia6udHR0FhehFYWSUjC3L7vd86YuGYAsqTRKgz5DBZNaE6iYOUcL0BVwwxjlF6igR0i4kuIKLeb5E4ABF6JAT3VrJ-tymNKvzWkc8BixxTn1gYyRxC59tBm_rfd4dnYYwoQbOwePj2Jnh9za4bvHzTT2yYdrdBltN4eb0y7R-_16Xz-S7evDpr7bkkS1zMRLZimzFY8xukaBd8EL50QTeOTcReOjUsorzyGKykUJlAvaOFNpFhQVfIlW_90UQjh8Tam308_hdAL_A9CgT9o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Characterization of a time-of-flight PET scanner based on lanthanum bromide</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karp, J.S. ; Kuhn, A. ; Perkins, A.E. ; Surti, S. ; Werner, M.E. ; Daube-Witherspoon, M.E. ; Popescu, L. ; Vandenberghe, S. ; Muehllehner, G.</creator><creatorcontrib>Karp, J.S. ; Kuhn, A. ; Perkins, A.E. ; Surti, S. ; Werner, M.E. ; Daube-Witherspoon, M.E. ; Popescu, L. ; Vandenberghe, S. ; Muehllehner, G.</creatorcontrib><description>A proto-type time-of-flight (TOF) 3D PET scanner based on lanthanum bromide detectors has been developed. The LaBr/sub 3/(5%Ce) Anger-logic detectors in this new scanner use 4/spl times/4/spl times/30 mm pixels and continuous light-guide coupled to a hexagonal array of 50-mm PMTs. The scanner consists of 24 modules with a 93-cm detector diameter and 25-cm axial field-of-view. Initial characterization of scanner performance has been performed, including energy and timing performance. We currently measure an overall system energy resolution of 7.5% and a system timing resolution is 460 ps, although we expect these results to improve eventually when the electronics are fully optimized. Since there are not yet standard tests to quantify the benefit of TOF, we designed two phantoms with hot and cold spheres in 27-cm and 35-cm diameter vessels to evaluate the TOF performance as a function of body size. The data from this scanner are reconstructed with a fully 3D list-mode iterative TOF algorithm with all data corrections incorporated into the system model. We find that TOF reconstruction reduces the noise and background variability, especially for the larger phantom representing a large patient. In addition, TOF improves detail and contrast of the spheres (lesions), especially the smallest 10-mm sphere. The TOF reconstruction reaches convergence faster than the non-TOF reconstruction, and the rate of convergence is seen to be more insensitive to object size. These results indicate that TOF will help improve image quality and potentially reduce scan time with clinical patients.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 0780392213</identifier><identifier>ISBN: 9780780392212</identifier><identifier>EISSN: 2577-0829</identifier><identifier>DOI: 10.1109/NSSMIC.2005.1596707</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Detectors ; Energy resolution ; Image reconstruction ; Imaging phantoms ; Lanthanum ; Optical arrays ; Optical coupling ; Positron emission tomography ; Timing</subject><ispartof>IEEE Nuclear Science Symposium Conference Record, 2005, 2005, Vol.4, p.5 pp.-1923</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1596707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1596707$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karp, J.S.</creatorcontrib><creatorcontrib>Kuhn, A.</creatorcontrib><creatorcontrib>Perkins, A.E.</creatorcontrib><creatorcontrib>Surti, S.</creatorcontrib><creatorcontrib>Werner, M.E.</creatorcontrib><creatorcontrib>Daube-Witherspoon, M.E.</creatorcontrib><creatorcontrib>Popescu, L.</creatorcontrib><creatorcontrib>Vandenberghe, S.</creatorcontrib><creatorcontrib>Muehllehner, G.</creatorcontrib><title>Characterization of a time-of-flight PET scanner based on lanthanum bromide</title><title>IEEE Nuclear Science Symposium Conference Record, 2005</title><addtitle>NSSMIC</addtitle><description>A proto-type time-of-flight (TOF) 3D PET scanner based on lanthanum bromide detectors has been developed. The LaBr/sub 3/(5%Ce) Anger-logic detectors in this new scanner use 4/spl times/4/spl times/30 mm pixels and continuous light-guide coupled to a hexagonal array of 50-mm PMTs. The scanner consists of 24 modules with a 93-cm detector diameter and 25-cm axial field-of-view. Initial characterization of scanner performance has been performed, including energy and timing performance. We currently measure an overall system energy resolution of 7.5% and a system timing resolution is 460 ps, although we expect these results to improve eventually when the electronics are fully optimized. Since there are not yet standard tests to quantify the benefit of TOF, we designed two phantoms with hot and cold spheres in 27-cm and 35-cm diameter vessels to evaluate the TOF performance as a function of body size. The data from this scanner are reconstructed with a fully 3D list-mode iterative TOF algorithm with all data corrections incorporated into the system model. We find that TOF reconstruction reduces the noise and background variability, especially for the larger phantom representing a large patient. In addition, TOF improves detail and contrast of the spheres (lesions), especially the smallest 10-mm sphere. The TOF reconstruction reaches convergence faster than the non-TOF reconstruction, and the rate of convergence is seen to be more insensitive to object size. These results indicate that TOF will help improve image quality and potentially reduce scan time with clinical patients.</description><subject>Convergence</subject><subject>Detectors</subject><subject>Energy resolution</subject><subject>Image reconstruction</subject><subject>Imaging phantoms</subject><subject>Lanthanum</subject><subject>Optical arrays</subject><subject>Optical coupling</subject><subject>Positron emission tomography</subject><subject>Timing</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>0780392213</isbn><isbn>9780780392212</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMlOwzAURS0GibTwBd34Bxye53iJogIVZZBa1pXjgRhlQIlZwNdTia6udHR0FhehFYWSUjC3L7vd86YuGYAsqTRKgz5DBZNaE6iYOUcL0BVwwxjlF6igR0i4kuIKLeb5E4ABF6JAT3VrJ-tymNKvzWkc8BixxTn1gYyRxC59tBm_rfd4dnYYwoQbOwePj2Jnh9za4bvHzTT2yYdrdBltN4eb0y7R-_16Xz-S7evDpr7bkkS1zMRLZimzFY8xukaBd8EL50QTeOTcReOjUsorzyGKykUJlAvaOFNpFhQVfIlW_90UQjh8Tam308_hdAL_A9CgT9o</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Karp, J.S.</creator><creator>Kuhn, A.</creator><creator>Perkins, A.E.</creator><creator>Surti, S.</creator><creator>Werner, M.E.</creator><creator>Daube-Witherspoon, M.E.</creator><creator>Popescu, L.</creator><creator>Vandenberghe, S.</creator><creator>Muehllehner, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Characterization of a time-of-flight PET scanner based on lanthanum bromide</title><author>Karp, J.S. ; Kuhn, A. ; Perkins, A.E. ; Surti, S. ; Werner, M.E. ; Daube-Witherspoon, M.E. ; Popescu, L. ; Vandenberghe, S. ; Muehllehner, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d52a12a83fffcb60dced4cc4be3f33cf9df666d6d30f48cf501341bc9872e6143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Convergence</topic><topic>Detectors</topic><topic>Energy resolution</topic><topic>Image reconstruction</topic><topic>Imaging phantoms</topic><topic>Lanthanum</topic><topic>Optical arrays</topic><topic>Optical coupling</topic><topic>Positron emission tomography</topic><topic>Timing</topic><toplevel>online_resources</toplevel><creatorcontrib>Karp, J.S.</creatorcontrib><creatorcontrib>Kuhn, A.</creatorcontrib><creatorcontrib>Perkins, A.E.</creatorcontrib><creatorcontrib>Surti, S.</creatorcontrib><creatorcontrib>Werner, M.E.</creatorcontrib><creatorcontrib>Daube-Witherspoon, M.E.</creatorcontrib><creatorcontrib>Popescu, L.</creatorcontrib><creatorcontrib>Vandenberghe, S.</creatorcontrib><creatorcontrib>Muehllehner, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karp, J.S.</au><au>Kuhn, A.</au><au>Perkins, A.E.</au><au>Surti, S.</au><au>Werner, M.E.</au><au>Daube-Witherspoon, M.E.</au><au>Popescu, L.</au><au>Vandenberghe, S.</au><au>Muehllehner, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Characterization of a time-of-flight PET scanner based on lanthanum bromide</atitle><btitle>IEEE Nuclear Science Symposium Conference Record, 2005</btitle><stitle>NSSMIC</stitle><date>2005</date><risdate>2005</risdate><volume>4</volume><spage>5 pp.</spage><epage>1923</epage><pages>5 pp.-1923</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>0780392213</isbn><isbn>9780780392212</isbn><abstract>A proto-type time-of-flight (TOF) 3D PET scanner based on lanthanum bromide detectors has been developed. The LaBr/sub 3/(5%Ce) Anger-logic detectors in this new scanner use 4/spl times/4/spl times/30 mm pixels and continuous light-guide coupled to a hexagonal array of 50-mm PMTs. The scanner consists of 24 modules with a 93-cm detector diameter and 25-cm axial field-of-view. Initial characterization of scanner performance has been performed, including energy and timing performance. We currently measure an overall system energy resolution of 7.5% and a system timing resolution is 460 ps, although we expect these results to improve eventually when the electronics are fully optimized. Since there are not yet standard tests to quantify the benefit of TOF, we designed two phantoms with hot and cold spheres in 27-cm and 35-cm diameter vessels to evaluate the TOF performance as a function of body size. The data from this scanner are reconstructed with a fully 3D list-mode iterative TOF algorithm with all data corrections incorporated into the system model. We find that TOF reconstruction reduces the noise and background variability, especially for the larger phantom representing a large patient. In addition, TOF improves detail and contrast of the spheres (lesions), especially the smallest 10-mm sphere. The TOF reconstruction reaches convergence faster than the non-TOF reconstruction, and the rate of convergence is seen to be more insensitive to object size. These results indicate that TOF will help improve image quality and potentially reduce scan time with clinical patients.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2005.1596707</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3654
ispartof IEEE Nuclear Science Symposium Conference Record, 2005, 2005, Vol.4, p.5 pp.-1923
issn 1082-3654
2577-0829
language eng
recordid cdi_ieee_primary_1596707
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Convergence
Detectors
Energy resolution
Image reconstruction
Imaging phantoms
Lanthanum
Optical arrays
Optical coupling
Positron emission tomography
Timing
title Characterization of a time-of-flight PET scanner based on lanthanum bromide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Characterization%20of%20a%20time-of-flight%20PET%20scanner%20based%20on%20lanthanum%20bromide&rft.btitle=IEEE%20Nuclear%20Science%20Symposium%20Conference%20Record,%202005&rft.au=Karp,%20J.S.&rft.date=2005&rft.volume=4&rft.spage=5%20pp.&rft.epage=1923&rft.pages=5%20pp.-1923&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=0780392213&rft.isbn_list=9780780392212&rft_id=info:doi/10.1109/NSSMIC.2005.1596707&rft_dat=%3Cieee_6IE%3E1596707%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1596707&rfr_iscdi=true