Lossless medical-image compression using multiple array technique

The multiple array technique proposed in this paper is a lossless compression technique that involves no transformation, and achieves a very good compression ratio. This technique is based on forming three arrays to indicate and code the changes in the adjacent pixels. The arrays thus formed can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Devaraj, K., Munukur, R.K., Kesavamurthy, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 840
container_issue
container_start_page 837
container_title
container_volume
creator Devaraj, K.
Munukur, R.K.
Kesavamurthy, T.
description The multiple array technique proposed in this paper is a lossless compression technique that involves no transformation, and achieves a very good compression ratio. This technique is based on forming three arrays to indicate and code the changes in the adjacent pixels. The arrays thus formed can be further compressed using Huffman coding. The computational complexity is greatly reduced thus producing faster compressions and decompressions. Due to the combination of simplicity and compression potential of this technique, the algorithm "enjoys the best of both worlds". This technique attains compression ratios similar to or superior than the lossless image compression standards presently available. Due to the high compression ratio, the average bits required to represent a pixel is greatly reduced. Thus, this algorithm is optimally suited for telemedicine having fast transmission rates.
doi_str_mv 10.1109/ISPACS.2005.1595540
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1595540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1595540</ieee_id><sourcerecordid>1595540</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8c26cccc89ee8cc72d7eb1e550aee06d56797f4a79e360c66a6418e0c62167b73</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWlkDbNF2SjH7B7Jeu5NKaPgKGFNOugyDepivyoZS_y9zU0ZzPDLIYZQrYMcsbAPu_2n2W1zzmAzJm0Ugq4I4-gDRSWK1WsyCalH1gQUgiAB1LWfUoRU6ItNsG7mIXWXZD6vh3GJQ59R-cUugtt5ziFISJ14-iudEL_3YXfGZ_I_dnFhJubrsnh9eWres_qj7ddVdZZYFpOmfFc-QVjEY33mjcaTwylBIcIqpFKW30WTlssFHilnBLM4OI4U_qkizXZ_vcGRDwO47JzvB5vL4s_f15Jpw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lossless medical-image compression using multiple array technique</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Devaraj, K. ; Munukur, R.K. ; Kesavamurthy, T.</creator><creatorcontrib>Devaraj, K. ; Munukur, R.K. ; Kesavamurthy, T.</creatorcontrib><description>The multiple array technique proposed in this paper is a lossless compression technique that involves no transformation, and achieves a very good compression ratio. This technique is based on forming three arrays to indicate and code the changes in the adjacent pixels. The arrays thus formed can be further compressed using Huffman coding. The computational complexity is greatly reduced thus producing faster compressions and decompressions. Due to the combination of simplicity and compression potential of this technique, the algorithm "enjoys the best of both worlds". This technique attains compression ratios similar to or superior than the lossless image compression standards presently available. Due to the high compression ratio, the average bits required to represent a pixel is greatly reduced. Thus, this algorithm is optimally suited for telemedicine having fast transmission rates.</description><identifier>ISBN: 0780392663</identifier><identifier>ISBN: 9780780392663</identifier><identifier>DOI: 10.1109/ISPACS.2005.1595540</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Educational institutions ; Fourier transforms ; Gray Array ; Huffman coding ; Image coding ; Image reconstruction ; Image storage ; Lossless Image Compression ; Medical Image Compression ; Multiple Array Technique ; Redundancy ; Telemedicine ; Wavelet transforms</subject><ispartof>2005 International Symposium on Intelligent Signal Processing and Communication Systems, 2005, p.837-840</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1595540$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1595540$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Devaraj, K.</creatorcontrib><creatorcontrib>Munukur, R.K.</creatorcontrib><creatorcontrib>Kesavamurthy, T.</creatorcontrib><title>Lossless medical-image compression using multiple array technique</title><title>2005 International Symposium on Intelligent Signal Processing and Communication Systems</title><addtitle>ISPACS</addtitle><description>The multiple array technique proposed in this paper is a lossless compression technique that involves no transformation, and achieves a very good compression ratio. This technique is based on forming three arrays to indicate and code the changes in the adjacent pixels. The arrays thus formed can be further compressed using Huffman coding. The computational complexity is greatly reduced thus producing faster compressions and decompressions. Due to the combination of simplicity and compression potential of this technique, the algorithm "enjoys the best of both worlds". This technique attains compression ratios similar to or superior than the lossless image compression standards presently available. Due to the high compression ratio, the average bits required to represent a pixel is greatly reduced. Thus, this algorithm is optimally suited for telemedicine having fast transmission rates.</description><subject>Biomedical imaging</subject><subject>Educational institutions</subject><subject>Fourier transforms</subject><subject>Gray Array</subject><subject>Huffman coding</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Image storage</subject><subject>Lossless Image Compression</subject><subject>Medical Image Compression</subject><subject>Multiple Array Technique</subject><subject>Redundancy</subject><subject>Telemedicine</subject><subject>Wavelet transforms</subject><isbn>0780392663</isbn><isbn>9780780392663</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAWlkDbNF2SjH7B7Jeu5NKaPgKGFNOugyDepivyoZS_y9zU0ZzPDLIYZQrYMcsbAPu_2n2W1zzmAzJm0Ugq4I4-gDRSWK1WsyCalH1gQUgiAB1LWfUoRU6ItNsG7mIXWXZD6vh3GJQ59R-cUugtt5ziFISJ14-iudEL_3YXfGZ_I_dnFhJubrsnh9eWres_qj7ddVdZZYFpOmfFc-QVjEY33mjcaTwylBIcIqpFKW30WTlssFHilnBLM4OI4U_qkizXZ_vcGRDwO47JzvB5vL4s_f15Jpw</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Devaraj, K.</creator><creator>Munukur, R.K.</creator><creator>Kesavamurthy, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Lossless medical-image compression using multiple array technique</title><author>Devaraj, K. ; Munukur, R.K. ; Kesavamurthy, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8c26cccc89ee8cc72d7eb1e550aee06d56797f4a79e360c66a6418e0c62167b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biomedical imaging</topic><topic>Educational institutions</topic><topic>Fourier transforms</topic><topic>Gray Array</topic><topic>Huffman coding</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Image storage</topic><topic>Lossless Image Compression</topic><topic>Medical Image Compression</topic><topic>Multiple Array Technique</topic><topic>Redundancy</topic><topic>Telemedicine</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Devaraj, K.</creatorcontrib><creatorcontrib>Munukur, R.K.</creatorcontrib><creatorcontrib>Kesavamurthy, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Devaraj, K.</au><au>Munukur, R.K.</au><au>Kesavamurthy, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lossless medical-image compression using multiple array technique</atitle><btitle>2005 International Symposium on Intelligent Signal Processing and Communication Systems</btitle><stitle>ISPACS</stitle><date>2005</date><risdate>2005</risdate><spage>837</spage><epage>840</epage><pages>837-840</pages><isbn>0780392663</isbn><isbn>9780780392663</isbn><abstract>The multiple array technique proposed in this paper is a lossless compression technique that involves no transformation, and achieves a very good compression ratio. This technique is based on forming three arrays to indicate and code the changes in the adjacent pixels. The arrays thus formed can be further compressed using Huffman coding. The computational complexity is greatly reduced thus producing faster compressions and decompressions. Due to the combination of simplicity and compression potential of this technique, the algorithm "enjoys the best of both worlds". This technique attains compression ratios similar to or superior than the lossless image compression standards presently available. Due to the high compression ratio, the average bits required to represent a pixel is greatly reduced. Thus, this algorithm is optimally suited for telemedicine having fast transmission rates.</abstract><pub>IEEE</pub><doi>10.1109/ISPACS.2005.1595540</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780392663
ispartof 2005 International Symposium on Intelligent Signal Processing and Communication Systems, 2005, p.837-840
issn
language eng
recordid cdi_ieee_primary_1595540
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Educational institutions
Fourier transforms
Gray Array
Huffman coding
Image coding
Image reconstruction
Image storage
Lossless Image Compression
Medical Image Compression
Multiple Array Technique
Redundancy
Telemedicine
Wavelet transforms
title Lossless medical-image compression using multiple array technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lossless%20medical-image%20compression%20using%20multiple%20array%20technique&rft.btitle=2005%20International%20Symposium%20on%20Intelligent%20Signal%20Processing%20and%20Communication%20Systems&rft.au=Devaraj,%20K.&rft.date=2005&rft.spage=837&rft.epage=840&rft.pages=837-840&rft.isbn=0780392663&rft.isbn_list=9780780392663&rft_id=info:doi/10.1109/ISPACS.2005.1595540&rft_dat=%3Cieee_6IE%3E1595540%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1595540&rfr_iscdi=true