Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks
Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for variable frequency drive applications. It is computationally rigorous and hence limits the switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 491 |
---|---|
container_issue | |
container_start_page | 487 |
container_title | |
container_volume | |
creator | Muthuramalingam, A. Sivaranjani, D. Himavathi, S. |
description | Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for variable frequency drive applications. It is computationally rigorous and hence limits the switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The interesting results observed are discussed. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained the optimal network architecture for SVM implementation is identified and presented. Further the feasibility of implementation is investigated. |
doi_str_mv | 10.1109/INDCON.2005.1590218 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1590218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1590218</ieee_id><sourcerecordid>1590218</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-340e27f0cce4390dcb1ef3da01e2220742ed3e9491753076668b00e1c35ebda53</originalsourceid><addsrcrecordid>eNotkEtOwzAUAC0BEqX0BN34AgnPvyReVuEXqaQS0Ipd5dgvlSEkleOCuD0VdDWb0SyGkDmDlDHQN1V9W67qlAOolCkNnBVn5AryAoRWIOQ5mXDBVaIlvF2S2Ti-A8DRZkzJCXl-2RuLdIM2DoE-De7QmeiHng4tNXQzdNHskLboaNV_YYgY6Hr0_Y4uQvStt950tMZD-EP8HsLHeE0uWtONODtxStb3d6_lY7JcPVTlYpl4lquYCAnI8xasRSk0ONswbIUzwJBzDrnk6ARqqY-2gDzLsqIBQGaFwsYZJaZk_t_1iLjdB_9pws_2tED8AmP8T-o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Muthuramalingam, A. ; Sivaranjani, D. ; Himavathi, S.</creator><creatorcontrib>Muthuramalingam, A. ; Sivaranjani, D. ; Himavathi, S.</creatorcontrib><description>Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for variable frequency drive applications. It is computationally rigorous and hence limits the switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The interesting results observed are discussed. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained the optimal network architecture for SVM implementation is identified and presented. Further the feasibility of implementation is investigated.</description><identifier>ISSN: 2325-940X</identifier><identifier>ISBN: 0780395034</identifier><identifier>ISBN: 9780780395039</identifier><identifier>DOI: 10.1109/INDCON.2005.1590218</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computer applications ; Computer architecture ; FPGA Implementation and THD ; Layer Multiplexing ; Neural Network ; Neural networks ; Neurons ; Pulse width modulation inverters ; Space vector pulse width modulation ; Support vector machines ; SVM-VSI ; Switching frequency ; Voltage</subject><ispartof>2005 Annual IEEE India Conference - Indicon, 2005, p.487-491</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1590218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1590218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Muthuramalingam, A.</creatorcontrib><creatorcontrib>Sivaranjani, D.</creatorcontrib><creatorcontrib>Himavathi, S.</creatorcontrib><title>Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks</title><title>2005 Annual IEEE India Conference - Indicon</title><addtitle>INDCON</addtitle><description>Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for variable frequency drive applications. It is computationally rigorous and hence limits the switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The interesting results observed are discussed. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained the optimal network architecture for SVM implementation is identified and presented. Further the feasibility of implementation is investigated.</description><subject>Artificial neural networks</subject><subject>Computer applications</subject><subject>Computer architecture</subject><subject>FPGA Implementation and THD</subject><subject>Layer Multiplexing</subject><subject>Neural Network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pulse width modulation inverters</subject><subject>Space vector pulse width modulation</subject><subject>Support vector machines</subject><subject>SVM-VSI</subject><subject>Switching frequency</subject><subject>Voltage</subject><issn>2325-940X</issn><isbn>0780395034</isbn><isbn>9780780395039</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtOwzAUAC0BEqX0BN34AgnPvyReVuEXqaQS0Ipd5dgvlSEkleOCuD0VdDWb0SyGkDmDlDHQN1V9W67qlAOolCkNnBVn5AryAoRWIOQ5mXDBVaIlvF2S2Ti-A8DRZkzJCXl-2RuLdIM2DoE-De7QmeiHng4tNXQzdNHskLboaNV_YYgY6Hr0_Y4uQvStt950tMZD-EP8HsLHeE0uWtONODtxStb3d6_lY7JcPVTlYpl4lquYCAnI8xasRSk0ONswbIUzwJBzDrnk6ARqqY-2gDzLsqIBQGaFwsYZJaZk_t_1iLjdB_9pws_2tED8AmP8T-o</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Muthuramalingam, A.</creator><creator>Sivaranjani, D.</creator><creator>Himavathi, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks</title><author>Muthuramalingam, A. ; Sivaranjani, D. ; Himavathi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-340e27f0cce4390dcb1ef3da01e2220742ed3e9491753076668b00e1c35ebda53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial neural networks</topic><topic>Computer applications</topic><topic>Computer architecture</topic><topic>FPGA Implementation and THD</topic><topic>Layer Multiplexing</topic><topic>Neural Network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pulse width modulation inverters</topic><topic>Space vector pulse width modulation</topic><topic>Support vector machines</topic><topic>SVM-VSI</topic><topic>Switching frequency</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Muthuramalingam, A.</creatorcontrib><creatorcontrib>Sivaranjani, D.</creatorcontrib><creatorcontrib>Himavathi, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muthuramalingam, A.</au><au>Sivaranjani, D.</au><au>Himavathi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks</atitle><btitle>2005 Annual IEEE India Conference - Indicon</btitle><stitle>INDCON</stitle><date>2005</date><risdate>2005</risdate><spage>487</spage><epage>491</epage><pages>487-491</pages><issn>2325-940X</issn><isbn>0780395034</isbn><isbn>9780780395039</isbn><abstract>Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for variable frequency drive applications. It is computationally rigorous and hence limits the switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The interesting results observed are discussed. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained the optimal network architecture for SVM implementation is identified and presented. Further the feasibility of implementation is investigated.</abstract><pub>IEEE</pub><doi>10.1109/INDCON.2005.1590218</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-940X |
ispartof | 2005 Annual IEEE India Conference - Indicon, 2005, p.487-491 |
issn | 2325-940X |
language | eng |
recordid | cdi_ieee_primary_1590218 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Computer applications Computer architecture FPGA Implementation and THD Layer Multiplexing Neural Network Neural networks Neurons Pulse width modulation inverters Space vector pulse width modulation Support vector machines SVM-VSI Switching frequency Voltage |
title | Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A42%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Space%20Vector%20Modulation%20of%20a%20Voltage%20fed%20Inverter%20Using%20Artificial%20Neural%20Networks&rft.btitle=2005%20Annual%20IEEE%20India%20Conference%20-%20Indicon&rft.au=Muthuramalingam,%20A.&rft.date=2005&rft.spage=487&rft.epage=491&rft.pages=487-491&rft.issn=2325-940X&rft.isbn=0780395034&rft.isbn_list=9780780395039&rft_id=info:doi/10.1109/INDCON.2005.1590218&rft_dat=%3Cieee_6IE%3E1590218%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1590218&rfr_iscdi=true |