Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks

Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for variable frequency drive applications. It is computationally rigorous and hence limits the switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Muthuramalingam, A., Sivaranjani, D., Himavathi, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue
container_start_page 487
container_title
container_volume
creator Muthuramalingam, A.
Sivaranjani, D.
Himavathi, S.
description Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for variable frequency drive applications. It is computationally rigorous and hence limits the switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The interesting results observed are discussed. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained the optimal network architecture for SVM implementation is identified and presented. Further the feasibility of implementation is investigated.
doi_str_mv 10.1109/INDCON.2005.1590218
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1590218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1590218</ieee_id><sourcerecordid>1590218</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-340e27f0cce4390dcb1ef3da01e2220742ed3e9491753076668b00e1c35ebda53</originalsourceid><addsrcrecordid>eNotkEtOwzAUAC0BEqX0BN34AgnPvyReVuEXqaQS0Ipd5dgvlSEkleOCuD0VdDWb0SyGkDmDlDHQN1V9W67qlAOolCkNnBVn5AryAoRWIOQ5mXDBVaIlvF2S2Ti-A8DRZkzJCXl-2RuLdIM2DoE-De7QmeiHng4tNXQzdNHskLboaNV_YYgY6Hr0_Y4uQvStt950tMZD-EP8HsLHeE0uWtONODtxStb3d6_lY7JcPVTlYpl4lquYCAnI8xasRSk0ONswbIUzwJBzDrnk6ARqqY-2gDzLsqIBQGaFwsYZJaZk_t_1iLjdB_9pws_2tED8AmP8T-o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Muthuramalingam, A. ; Sivaranjani, D. ; Himavathi, S.</creator><creatorcontrib>Muthuramalingam, A. ; Sivaranjani, D. ; Himavathi, S.</creatorcontrib><description>Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for variable frequency drive applications. It is computationally rigorous and hence limits the switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The interesting results observed are discussed. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained the optimal network architecture for SVM implementation is identified and presented. Further the feasibility of implementation is investigated.</description><identifier>ISSN: 2325-940X</identifier><identifier>ISBN: 0780395034</identifier><identifier>ISBN: 9780780395039</identifier><identifier>DOI: 10.1109/INDCON.2005.1590218</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computer applications ; Computer architecture ; FPGA Implementation and THD ; Layer Multiplexing ; Neural Network ; Neural networks ; Neurons ; Pulse width modulation inverters ; Space vector pulse width modulation ; Support vector machines ; SVM-VSI ; Switching frequency ; Voltage</subject><ispartof>2005 Annual IEEE India Conference - Indicon, 2005, p.487-491</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1590218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1590218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Muthuramalingam, A.</creatorcontrib><creatorcontrib>Sivaranjani, D.</creatorcontrib><creatorcontrib>Himavathi, S.</creatorcontrib><title>Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks</title><title>2005 Annual IEEE India Conference - Indicon</title><addtitle>INDCON</addtitle><description>Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for variable frequency drive applications. It is computationally rigorous and hence limits the switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The interesting results observed are discussed. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained the optimal network architecture for SVM implementation is identified and presented. Further the feasibility of implementation is investigated.</description><subject>Artificial neural networks</subject><subject>Computer applications</subject><subject>Computer architecture</subject><subject>FPGA Implementation and THD</subject><subject>Layer Multiplexing</subject><subject>Neural Network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pulse width modulation inverters</subject><subject>Space vector pulse width modulation</subject><subject>Support vector machines</subject><subject>SVM-VSI</subject><subject>Switching frequency</subject><subject>Voltage</subject><issn>2325-940X</issn><isbn>0780395034</isbn><isbn>9780780395039</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtOwzAUAC0BEqX0BN34AgnPvyReVuEXqaQS0Ipd5dgvlSEkleOCuD0VdDWb0SyGkDmDlDHQN1V9W67qlAOolCkNnBVn5AryAoRWIOQ5mXDBVaIlvF2S2Ti-A8DRZkzJCXl-2RuLdIM2DoE-De7QmeiHng4tNXQzdNHskLboaNV_YYgY6Hr0_Y4uQvStt950tMZD-EP8HsLHeE0uWtONODtxStb3d6_lY7JcPVTlYpl4lquYCAnI8xasRSk0ONswbIUzwJBzDrnk6ARqqY-2gDzLsqIBQGaFwsYZJaZk_t_1iLjdB_9pws_2tED8AmP8T-o</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Muthuramalingam, A.</creator><creator>Sivaranjani, D.</creator><creator>Himavathi, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks</title><author>Muthuramalingam, A. ; Sivaranjani, D. ; Himavathi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-340e27f0cce4390dcb1ef3da01e2220742ed3e9491753076668b00e1c35ebda53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial neural networks</topic><topic>Computer applications</topic><topic>Computer architecture</topic><topic>FPGA Implementation and THD</topic><topic>Layer Multiplexing</topic><topic>Neural Network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pulse width modulation inverters</topic><topic>Space vector pulse width modulation</topic><topic>Support vector machines</topic><topic>SVM-VSI</topic><topic>Switching frequency</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Muthuramalingam, A.</creatorcontrib><creatorcontrib>Sivaranjani, D.</creatorcontrib><creatorcontrib>Himavathi, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muthuramalingam, A.</au><au>Sivaranjani, D.</au><au>Himavathi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks</atitle><btitle>2005 Annual IEEE India Conference - Indicon</btitle><stitle>INDCON</stitle><date>2005</date><risdate>2005</risdate><spage>487</spage><epage>491</epage><pages>487-491</pages><issn>2325-940X</issn><isbn>0780395034</isbn><isbn>9780780395039</isbn><abstract>Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for variable frequency drive applications. It is computationally rigorous and hence limits the switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The interesting results observed are discussed. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained the optimal network architecture for SVM implementation is identified and presented. Further the feasibility of implementation is investigated.</abstract><pub>IEEE</pub><doi>10.1109/INDCON.2005.1590218</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-940X
ispartof 2005 Annual IEEE India Conference - Indicon, 2005, p.487-491
issn 2325-940X
language eng
recordid cdi_ieee_primary_1590218
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Computer applications
Computer architecture
FPGA Implementation and THD
Layer Multiplexing
Neural Network
Neural networks
Neurons
Pulse width modulation inverters
Space vector pulse width modulation
Support vector machines
SVM-VSI
Switching frequency
Voltage
title Space Vector Modulation of a Voltage fed Inverter Using Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A42%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Space%20Vector%20Modulation%20of%20a%20Voltage%20fed%20Inverter%20Using%20Artificial%20Neural%20Networks&rft.btitle=2005%20Annual%20IEEE%20India%20Conference%20-%20Indicon&rft.au=Muthuramalingam,%20A.&rft.date=2005&rft.spage=487&rft.epage=491&rft.pages=487-491&rft.issn=2325-940X&rft.isbn=0780395034&rft.isbn_list=9780780395039&rft_id=info:doi/10.1109/INDCON.2005.1590218&rft_dat=%3Cieee_6IE%3E1590218%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1590218&rfr_iscdi=true