A neuro-fuzzy system for steel beams patch load prediction

This paper presents a neuro-fuzzy system developed to predict and classify the behaviour of steel beam subjected to concentrated loads. A good performance was obtained with a previously developed neural network system by Fonseca et al., (1999, 2001, 2003) when compared to available experimental data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fonseca, E.T., Vellasco, P.C.Gd.S., Vellasco, M.M.B.R., de Andrade, S.A.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 6 pp.
container_title
container_volume
creator Fonseca, E.T.
Vellasco, P.C.Gd.S.
Vellasco, M.M.B.R.
de Andrade, S.A.L.
description This paper presents a neuro-fuzzy system developed to predict and classify the behaviour of steel beam subjected to concentrated loads. A good performance was obtained with a previously developed neural network system by Fonseca et al., (1999, 2001, 2003) when compared to available experimental data. The neural network accuracy was also significantly better than existing prediction formulae (Lyse and Godfrey, 1935; Bergfelt, 1979; Skaloud and Drdacky, 1975; Roberts and Newark, 1997). Despite this fact, the system architecture did not explicitly consider the different structural behaviour related to the beam collapse (web and flange yielding, web buckling and web crippling). Therefore this paper presents a neuro-fuzzy system that takes into account the ultimate limit state. The neuro-fuzzy system architecture is composed of one neuro-fuzzy model and one prediction neural network. The neuro-fuzzy model is used to classify the beams according to its pertinence to a specific structural response. Then, a neural network uses the pertinence established by the neuro-fuzzy classification model, to finally determine the beam patch load resistance.
doi_str_mv 10.1109/ICHIS.2005.13
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1587735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1587735</ieee_id><sourcerecordid>1587735</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5b94843f0c96931aeb86a54c4428ac005f4753aebf8b2bdc756b06c092acefe93</originalsourceid><addsrcrecordid>eNotjj1rwzAURQWl0JJ6zNRFf8Cuvp4ldQumbQyBDG3mIMlP1MWOjeUMzq-vob3LPdzhcAnZclZwzuxLXe3rz0IwBgWXdySz2jBdWhAKtHwgWUo_bI20wEE8ktcdveB1GvJ4vd0WmpY0Y0_jMNEVsKMeXZ_o6ObwTbvBNXScsGnD3A6XJ3IfXZcw--8NOb2_fVX7_HD8qKvdIW-5hjkHb5VRMrJgSyu5Q29KByooJYwL68-oNMh1jsYL3wQNpWdlYFa4gBGt3JDnP2-LiOdxans3LWcORmsJ8hfF_UWn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A neuro-fuzzy system for steel beams patch load prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fonseca, E.T. ; Vellasco, P.C.Gd.S. ; Vellasco, M.M.B.R. ; de Andrade, S.A.L.</creator><creatorcontrib>Fonseca, E.T. ; Vellasco, P.C.Gd.S. ; Vellasco, M.M.B.R. ; de Andrade, S.A.L.</creatorcontrib><description>This paper presents a neuro-fuzzy system developed to predict and classify the behaviour of steel beam subjected to concentrated loads. A good performance was obtained with a previously developed neural network system by Fonseca et al., (1999, 2001, 2003) when compared to available experimental data. The neural network accuracy was also significantly better than existing prediction formulae (Lyse and Godfrey, 1935; Bergfelt, 1979; Skaloud and Drdacky, 1975; Roberts and Newark, 1997). Despite this fact, the system architecture did not explicitly consider the different structural behaviour related to the beam collapse (web and flange yielding, web buckling and web crippling). Therefore this paper presents a neuro-fuzzy system that takes into account the ultimate limit state. The neuro-fuzzy system architecture is composed of one neuro-fuzzy model and one prediction neural network. The neuro-fuzzy model is used to classify the beams according to its pertinence to a specific structural response. Then, a neural network uses the pertinence established by the neuro-fuzzy classification model, to finally determine the beam patch load resistance.</description><identifier>ISBN: 9780769524573</identifier><identifier>ISBN: 0769524575</identifier><identifier>DOI: 10.1109/ICHIS.2005.13</identifier><language>eng</language><publisher>IEEE</publisher><subject>Civil engineering ; Flanges ; Fuzzy neural networks ; Neural networks ; Predictive models ; Safety ; Service oriented architecture ; Steel ; Structural beams ; Structural engineering</subject><ispartof>Fifth International Conference on Hybrid Intelligent Systems (HIS'05), 2005, p.6 pp.</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1587735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1587735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fonseca, E.T.</creatorcontrib><creatorcontrib>Vellasco, P.C.Gd.S.</creatorcontrib><creatorcontrib>Vellasco, M.M.B.R.</creatorcontrib><creatorcontrib>de Andrade, S.A.L.</creatorcontrib><title>A neuro-fuzzy system for steel beams patch load prediction</title><title>Fifth International Conference on Hybrid Intelligent Systems (HIS'05)</title><addtitle>ICHIS</addtitle><description>This paper presents a neuro-fuzzy system developed to predict and classify the behaviour of steel beam subjected to concentrated loads. A good performance was obtained with a previously developed neural network system by Fonseca et al., (1999, 2001, 2003) when compared to available experimental data. The neural network accuracy was also significantly better than existing prediction formulae (Lyse and Godfrey, 1935; Bergfelt, 1979; Skaloud and Drdacky, 1975; Roberts and Newark, 1997). Despite this fact, the system architecture did not explicitly consider the different structural behaviour related to the beam collapse (web and flange yielding, web buckling and web crippling). Therefore this paper presents a neuro-fuzzy system that takes into account the ultimate limit state. The neuro-fuzzy system architecture is composed of one neuro-fuzzy model and one prediction neural network. The neuro-fuzzy model is used to classify the beams according to its pertinence to a specific structural response. Then, a neural network uses the pertinence established by the neuro-fuzzy classification model, to finally determine the beam patch load resistance.</description><subject>Civil engineering</subject><subject>Flanges</subject><subject>Fuzzy neural networks</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Safety</subject><subject>Service oriented architecture</subject><subject>Steel</subject><subject>Structural beams</subject><subject>Structural engineering</subject><isbn>9780769524573</isbn><isbn>0769524575</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1rwzAURQWl0JJ6zNRFf8Cuvp4ldQumbQyBDG3mIMlP1MWOjeUMzq-vob3LPdzhcAnZclZwzuxLXe3rz0IwBgWXdySz2jBdWhAKtHwgWUo_bI20wEE8ktcdveB1GvJ4vd0WmpY0Y0_jMNEVsKMeXZ_o6ObwTbvBNXScsGnD3A6XJ3IfXZcw--8NOb2_fVX7_HD8qKvdIW-5hjkHb5VRMrJgSyu5Q29KByooJYwL68-oNMh1jsYL3wQNpWdlYFa4gBGt3JDnP2-LiOdxans3LWcORmsJ8hfF_UWn</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Fonseca, E.T.</creator><creator>Vellasco, P.C.Gd.S.</creator><creator>Vellasco, M.M.B.R.</creator><creator>de Andrade, S.A.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>A neuro-fuzzy system for steel beams patch load prediction</title><author>Fonseca, E.T. ; Vellasco, P.C.Gd.S. ; Vellasco, M.M.B.R. ; de Andrade, S.A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5b94843f0c96931aeb86a54c4428ac005f4753aebf8b2bdc756b06c092acefe93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Civil engineering</topic><topic>Flanges</topic><topic>Fuzzy neural networks</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Safety</topic><topic>Service oriented architecture</topic><topic>Steel</topic><topic>Structural beams</topic><topic>Structural engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Fonseca, E.T.</creatorcontrib><creatorcontrib>Vellasco, P.C.Gd.S.</creatorcontrib><creatorcontrib>Vellasco, M.M.B.R.</creatorcontrib><creatorcontrib>de Andrade, S.A.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fonseca, E.T.</au><au>Vellasco, P.C.Gd.S.</au><au>Vellasco, M.M.B.R.</au><au>de Andrade, S.A.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A neuro-fuzzy system for steel beams patch load prediction</atitle><btitle>Fifth International Conference on Hybrid Intelligent Systems (HIS'05)</btitle><stitle>ICHIS</stitle><date>2005</date><risdate>2005</risdate><spage>6 pp.</spage><pages>6 pp.-</pages><isbn>9780769524573</isbn><isbn>0769524575</isbn><abstract>This paper presents a neuro-fuzzy system developed to predict and classify the behaviour of steel beam subjected to concentrated loads. A good performance was obtained with a previously developed neural network system by Fonseca et al., (1999, 2001, 2003) when compared to available experimental data. The neural network accuracy was also significantly better than existing prediction formulae (Lyse and Godfrey, 1935; Bergfelt, 1979; Skaloud and Drdacky, 1975; Roberts and Newark, 1997). Despite this fact, the system architecture did not explicitly consider the different structural behaviour related to the beam collapse (web and flange yielding, web buckling and web crippling). Therefore this paper presents a neuro-fuzzy system that takes into account the ultimate limit state. The neuro-fuzzy system architecture is composed of one neuro-fuzzy model and one prediction neural network. The neuro-fuzzy model is used to classify the beams according to its pertinence to a specific structural response. Then, a neural network uses the pertinence established by the neuro-fuzzy classification model, to finally determine the beam patch load resistance.</abstract><pub>IEEE</pub><doi>10.1109/ICHIS.2005.13</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769524573
ispartof Fifth International Conference on Hybrid Intelligent Systems (HIS'05), 2005, p.6 pp.
issn
language eng
recordid cdi_ieee_primary_1587735
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Civil engineering
Flanges
Fuzzy neural networks
Neural networks
Predictive models
Safety
Service oriented architecture
Steel
Structural beams
Structural engineering
title A neuro-fuzzy system for steel beams patch load prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20neuro-fuzzy%20system%20for%20steel%20beams%20patch%20load%20prediction&rft.btitle=Fifth%20International%20Conference%20on%20Hybrid%20Intelligent%20Systems%20(HIS'05)&rft.au=Fonseca,%20E.T.&rft.date=2005&rft.spage=6%20pp.&rft.pages=6%20pp.-&rft.isbn=9780769524573&rft.isbn_list=0769524575&rft_id=info:doi/10.1109/ICHIS.2005.13&rft_dat=%3Cieee_6IE%3E1587735%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1587735&rfr_iscdi=true