A State Predictor for Multivariable Systems Including Multiple Delays in Each Output Path

Various practical systems include time delays due to measurement and computational delays, and transmission and transport lags. In this paper, the authors propose a novel state predictor for a certain class of multivariable systems including multiple output delays. The predictor consists of full-ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sawaguchi, Y., Furutani, E., Araki, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7209
container_issue
container_start_page 7204
container_title
container_volume
creator Sawaguchi, Y.
Furutani, E.
Araki, M.
description Various practical systems include time delays due to measurement and computational delays, and transmission and transport lags. In this paper, the authors propose a novel state predictor for a certain class of multivariable systems including multiple output delays. The predictor consists of full-order observers estimating past state from each delayed output and finite interval integrators compensating the effect of the delays using state transition equations. State prediction error converges to zero at an arbitrary rate, which can be determined by choosing a finite number of poles of the full-order observers. In this predictor, the distance to instability of the state transition matrix is not affected by the delays. This means that large delays have no influence on the numerical stability, whereas that of a conventional observer highly depends on the delays. Numerical examples for an integral process and an unstable process demonstrate the effectiveness of the proposed predictor.
doi_str_mv 10.1109/CDC.2005.1583323
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1583323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1583323</ieee_id><sourcerecordid>1583323</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-defeea6a27a91e44e3e28eef5034b3a0f12b2c730f94527828824336a2ec03e13</originalsourceid><addsrcrecordid>eNotkEFLw0AUhBdUsNbeBS_7B1Lf7kuyu8eS1lqotFA9eCqb5MWupDFkN0L-vYEWZpjDx8xhGHsSMBcCzEu2zOYSIJmLRCNKvGEzozSMQpOkStyyCQgjIilFes8evP8BAA1pOmFfC34INhDfd1S6Ivx2vBr93tfB_dnO2bwmfhh8oLPnm6ao-9I13xfejmhJtR08dw1f2eLEd31o-8D3Npwe2V1la0-za07Z5-vqI3uLtrv1JltsIydUEqKSKiKbWqmsERTHhCQ1UZUAxjlaqITMZaEQKhMnUmmptYwRxwIVgCRwyp4vu46Ijm3nzrYbjtcn8B8hM1HA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A State Predictor for Multivariable Systems Including Multiple Delays in Each Output Path</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sawaguchi, Y. ; Furutani, E. ; Araki, M.</creator><creatorcontrib>Sawaguchi, Y. ; Furutani, E. ; Araki, M.</creatorcontrib><description>Various practical systems include time delays due to measurement and computational delays, and transmission and transport lags. In this paper, the authors propose a novel state predictor for a certain class of multivariable systems including multiple output delays. The predictor consists of full-order observers estimating past state from each delayed output and finite interval integrators compensating the effect of the delays using state transition equations. State prediction error converges to zero at an arbitrary rate, which can be determined by choosing a finite number of poles of the full-order observers. In this predictor, the distance to instability of the state transition matrix is not affected by the delays. This means that large delays have no influence on the numerical stability, whereas that of a conventional observer highly depends on the delays. Numerical examples for an integral process and an unstable process demonstrate the effectiveness of the proposed predictor.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780395671</identifier><identifier>ISBN: 0780395670</identifier><identifier>DOI: 10.1109/CDC.2005.1583323</identifier><language>eng</language><publisher>IEEE</publisher><subject>Delay effects ; Delay estimation ; Delay systems ; Equations ; MIMO ; Numerical stability ; Observers ; Poles and zeros ; State estimation ; Time measurement</subject><ispartof>Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p.7204-7209</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1583323$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1583323$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sawaguchi, Y.</creatorcontrib><creatorcontrib>Furutani, E.</creatorcontrib><creatorcontrib>Araki, M.</creatorcontrib><title>A State Predictor for Multivariable Systems Including Multiple Delays in Each Output Path</title><title>Proceedings of the 44th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>Various practical systems include time delays due to measurement and computational delays, and transmission and transport lags. In this paper, the authors propose a novel state predictor for a certain class of multivariable systems including multiple output delays. The predictor consists of full-order observers estimating past state from each delayed output and finite interval integrators compensating the effect of the delays using state transition equations. State prediction error converges to zero at an arbitrary rate, which can be determined by choosing a finite number of poles of the full-order observers. In this predictor, the distance to instability of the state transition matrix is not affected by the delays. This means that large delays have no influence on the numerical stability, whereas that of a conventional observer highly depends on the delays. Numerical examples for an integral process and an unstable process demonstrate the effectiveness of the proposed predictor.</description><subject>Delay effects</subject><subject>Delay estimation</subject><subject>Delay systems</subject><subject>Equations</subject><subject>MIMO</subject><subject>Numerical stability</subject><subject>Observers</subject><subject>Poles and zeros</subject><subject>State estimation</subject><subject>Time measurement</subject><issn>0191-2216</issn><isbn>9780780395671</isbn><isbn>0780395670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEFLw0AUhBdUsNbeBS_7B1Lf7kuyu8eS1lqotFA9eCqb5MWupDFkN0L-vYEWZpjDx8xhGHsSMBcCzEu2zOYSIJmLRCNKvGEzozSMQpOkStyyCQgjIilFes8evP8BAA1pOmFfC34INhDfd1S6Ivx2vBr93tfB_dnO2bwmfhh8oLPnm6ao-9I13xfejmhJtR08dw1f2eLEd31o-8D3Npwe2V1la0-za07Z5-vqI3uLtrv1JltsIydUEqKSKiKbWqmsERTHhCQ1UZUAxjlaqITMZaEQKhMnUmmptYwRxwIVgCRwyp4vu46Ijm3nzrYbjtcn8B8hM1HA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Sawaguchi, Y.</creator><creator>Furutani, E.</creator><creator>Araki, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>A State Predictor for Multivariable Systems Including Multiple Delays in Each Output Path</title><author>Sawaguchi, Y. ; Furutani, E. ; Araki, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-defeea6a27a91e44e3e28eef5034b3a0f12b2c730f94527828824336a2ec03e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Delay effects</topic><topic>Delay estimation</topic><topic>Delay systems</topic><topic>Equations</topic><topic>MIMO</topic><topic>Numerical stability</topic><topic>Observers</topic><topic>Poles and zeros</topic><topic>State estimation</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Sawaguchi, Y.</creatorcontrib><creatorcontrib>Furutani, E.</creatorcontrib><creatorcontrib>Araki, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sawaguchi, Y.</au><au>Furutani, E.</au><au>Araki, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A State Predictor for Multivariable Systems Including Multiple Delays in Each Output Path</atitle><btitle>Proceedings of the 44th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2005</date><risdate>2005</risdate><spage>7204</spage><epage>7209</epage><pages>7204-7209</pages><issn>0191-2216</issn><isbn>9780780395671</isbn><isbn>0780395670</isbn><abstract>Various practical systems include time delays due to measurement and computational delays, and transmission and transport lags. In this paper, the authors propose a novel state predictor for a certain class of multivariable systems including multiple output delays. The predictor consists of full-order observers estimating past state from each delayed output and finite interval integrators compensating the effect of the delays using state transition equations. State prediction error converges to zero at an arbitrary rate, which can be determined by choosing a finite number of poles of the full-order observers. In this predictor, the distance to instability of the state transition matrix is not affected by the delays. This means that large delays have no influence on the numerical stability, whereas that of a conventional observer highly depends on the delays. Numerical examples for an integral process and an unstable process demonstrate the effectiveness of the proposed predictor.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2005.1583323</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p.7204-7209
issn 0191-2216
language eng
recordid cdi_ieee_primary_1583323
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Delay effects
Delay estimation
Delay systems
Equations
MIMO
Numerical stability
Observers
Poles and zeros
State estimation
Time measurement
title A State Predictor for Multivariable Systems Including Multiple Delays in Each Output Path
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20State%20Predictor%20for%20Multivariable%20Systems%20Including%20Multiple%20Delays%20in%20Each%20Output%20Path&rft.btitle=Proceedings%20of%20the%2044th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Sawaguchi,%20Y.&rft.date=2005&rft.spage=7204&rft.epage=7209&rft.pages=7204-7209&rft.issn=0191-2216&rft.isbn=9780780395671&rft.isbn_list=0780395670&rft_id=info:doi/10.1109/CDC.2005.1583323&rft_dat=%3Cieee_6IE%3E1583323%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1583323&rfr_iscdi=true